Intelligent pavement condition survey: Overview of current researches and practices

Allen A. Zhang , Jing Shang , Baoxian Li , Bing Hui , Hongren Gong , Lin Li , You Zhan , Changfa Ai , Haoran Niu , Xu Chu , Zilong Nie , Zishuo Dong , Anzheng He , Hang Zhang , Dingfeng Wang , Yi Peng , Yifan Wei , Huixuan Cheng
{"title":"Intelligent pavement condition survey: Overview of current researches and practices","authors":"Allen A. Zhang ,&nbsp;Jing Shang ,&nbsp;Baoxian Li ,&nbsp;Bing Hui ,&nbsp;Hongren Gong ,&nbsp;Lin Li ,&nbsp;You Zhan ,&nbsp;Changfa Ai ,&nbsp;Haoran Niu ,&nbsp;Xu Chu ,&nbsp;Zilong Nie ,&nbsp;Zishuo Dong ,&nbsp;Anzheng He ,&nbsp;Hang Zhang ,&nbsp;Dingfeng Wang ,&nbsp;Yi Peng ,&nbsp;Yifan Wei ,&nbsp;Huixuan Cheng","doi":"10.1016/j.jreng.2024.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>Automated pavement condition survey is of critical importance to road network management. There are three primary tasks involved in pavement condition surveys, namely data collection, data processing and condition evaluation. Artificial intelligence (AI) has achieved many breakthroughs in almost every aspect of modern technology over the past decade, and undoubtedly offers a more robust approach to automated pavement condition survey. This article aims to provide a comprehensive review on data collection systems, data processing algorithms and condition evaluation methods proposed between 2010 and 2023 for intelligent pavement condition survey. In particular, the data collection system includes AI-driven hardware devices and automated pavement data collection vehicles. The AI-driven hardware devices including right-of-way (ROW) cameras, ground penetrating radar (GPR) devices, light detection and ranging (LiDAR) devices, and advanced laser imaging systems, etc. These different hardware components can be selectively mounted on a vehicle to simultaneously collect multimedia information about the pavement. In addition, this article pays close attention to the application of artificial intelligence methods in detecting pavement distresses, measuring pavement roughness, identifying pavement rutting, analyzing skid resistance and evaluating structural strength of pavements. Based upon the analysis of a variety of the state-of-the-art artificial intelligence methodologies, remaining challenges and future needs with respect to intelligent pavement condition survey are discussed eventually.</p></div>","PeriodicalId":100830,"journal":{"name":"Journal of Road Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2097049824000283/pdfft?md5=07f0224e797daa9ef100c0aefc5a8785&pid=1-s2.0-S2097049824000283-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Road Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2097049824000283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automated pavement condition survey is of critical importance to road network management. There are three primary tasks involved in pavement condition surveys, namely data collection, data processing and condition evaluation. Artificial intelligence (AI) has achieved many breakthroughs in almost every aspect of modern technology over the past decade, and undoubtedly offers a more robust approach to automated pavement condition survey. This article aims to provide a comprehensive review on data collection systems, data processing algorithms and condition evaluation methods proposed between 2010 and 2023 for intelligent pavement condition survey. In particular, the data collection system includes AI-driven hardware devices and automated pavement data collection vehicles. The AI-driven hardware devices including right-of-way (ROW) cameras, ground penetrating radar (GPR) devices, light detection and ranging (LiDAR) devices, and advanced laser imaging systems, etc. These different hardware components can be selectively mounted on a vehicle to simultaneously collect multimedia information about the pavement. In addition, this article pays close attention to the application of artificial intelligence methods in detecting pavement distresses, measuring pavement roughness, identifying pavement rutting, analyzing skid resistance and evaluating structural strength of pavements. Based upon the analysis of a variety of the state-of-the-art artificial intelligence methodologies, remaining challenges and future needs with respect to intelligent pavement condition survey are discussed eventually.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能路面状况调查:当前研究与实践概述
自动路面状况调查对路网管理至关重要。路面状况调查涉及三项主要任务,即数据收集、数据处理和状况评估。人工智能(AI)在过去十年中几乎在现代技术的各个方面都取得了许多突破,无疑为路面状况自动调查提供了一种更强大的方法。本文旨在对 2010 年至 2023 年间提出的智能路面状况调查的数据采集系统、数据处理算法和状况评估方法进行全面评述。其中,数据采集系统包括人工智能驱动的硬件设备和自动路面数据采集车。人工智能驱动的硬件设备包括路权(ROW)摄像机、地面穿透雷达(GPR)设备、光探测和测距(LiDAR)设备以及先进的激光成像系统等。这些不同的硬件组件可选择性地安装在车辆上,以同时收集路面的多媒体信息。此外,本文还密切关注人工智能方法在检测路面病害、测量路面粗糙度、识别路面车辙、分析抗滑性和评估路面结构强度方面的应用。在对各种最先进的人工智能方法进行分析的基础上,最终讨论了智能路面状况调查方面仍然存在的挑战和未来的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
期刊最新文献
Bio-based rejuvenators in asphalt pavements: A comprehensive review and analytical study Towards green asphalt materials with lower emission of volatile organic compounds: A review on the release characteristics and its emission reduction additives Predictive modelling of volumetric and Marshall properties of asphalt mixtures modified with waste tire-derived char: A statistical neural network approach A review of the development of asphalt foaming technology Condition indices for rigid pavements: A comparative analysis of state DOTs using Michigan PMS data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1