首页 > 最新文献

Journal of Road Engineering最新文献

英文 中文
Towards green asphalt materials with lower emission of volatile organic compounds: A review on the release characteristics and its emission reduction additives 减少挥发性有机化合物排放的绿色沥青材料:释放特性及其减排添加剂综述
Pub Date : 2024-09-01 DOI: 10.1016/j.jreng.2024.04.005
Xiwen Chang , Feng Wang , Rui Wu , Chen Wang , Yue Xiao

Recently, researchers in the road field are focusing on the development of green asphalt materials with lower emission of volatile organic compounds (VOCs). The characterization methodology of asphalt VOCs and the influencing factors on VOCs release have always been the basic issue of asphalt VOCs emission reduction research. Researchers have proposed a variety of asphalt VOCs characterization methodologies, which also have mutually irreplaceable characteristics. Asphalt VOCs volatilization is affected by many factors. In this study, asphalt VOCs characterization methodologies were summarized, including their advantages, disadvantages, characteristics and applicable requirements. Subsequently, the influencing factors of VOCs release, such as asphalt types and environment conditions, are summarized to provide theoretical support for the emission reduction research. The classification and mechanism of newly-development asphalt VOCs emission reduction materials are reviewed. The reduction efficiencies are also compared to select better materials and put forward the improvement objective of new materials and new processes. In addition, the prospects about development of VOCs release mechanism of asphalt materials during the full life cycle and feasibility research of high-efficiency composite emission reduction materials in the future were put forward.

近年来,道路领域的研究人员正致力于开发挥发性有机化合物(VOCs)排放量更低的绿色沥青材料。沥青 VOCs 的表征方法以及 VOCs 释放的影响因素一直是沥青 VOCs 减排研究的基本问题。研究人员提出了多种沥青 VOCs 表征方法,这些方法也具有相互不可替代的特点。沥青 VOCs 的挥发受很多因素的影响。本研究总结了沥青 VOCs 表征方法,包括其优缺点、特点和适用要求。随后,总结了沥青类型、环境条件等 VOCs 释放的影响因素,为减排研究提供理论支持。综述了新开发的沥青 VOCs 减排材料的分类和机理。通过对减排效率的比较,筛选出更好的材料,并提出了新材料和新工艺的改进目标。此外,还展望了沥青材料全生命周期 VOCs 释放机理的发展前景以及未来高效复合减排材料的可行性研究。
{"title":"Towards green asphalt materials with lower emission of volatile organic compounds: A review on the release characteristics and its emission reduction additives","authors":"Xiwen Chang ,&nbsp;Feng Wang ,&nbsp;Rui Wu ,&nbsp;Chen Wang ,&nbsp;Yue Xiao","doi":"10.1016/j.jreng.2024.04.005","DOIUrl":"10.1016/j.jreng.2024.04.005","url":null,"abstract":"<div><p>Recently, researchers in the road field are focusing on the development of green asphalt materials with lower emission of volatile organic compounds (VOCs). The characterization methodology of asphalt VOCs and the influencing factors on VOCs release have always been the basic issue of asphalt VOCs emission reduction research. Researchers have proposed a variety of asphalt VOCs characterization methodologies, which also have mutually irreplaceable characteristics. Asphalt VOCs volatilization is affected by many factors. In this study, asphalt VOCs characterization methodologies were summarized, including their advantages, disadvantages, characteristics and applicable requirements. Subsequently, the influencing factors of VOCs release, such as asphalt types and environment conditions, are summarized to provide theoretical support for the emission reduction research. The classification and mechanism of newly-development asphalt VOCs emission reduction materials are reviewed. The reduction efficiencies are also compared to select better materials and put forward the improvement objective of new materials and new processes. In addition, the prospects about development of VOCs release mechanism of asphalt materials during the full life cycle and feasibility research of high-efficiency composite emission reduction materials in the future were put forward.</p></div>","PeriodicalId":100830,"journal":{"name":"Journal of Road Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2097049824000301/pdfft?md5=cfea4efe26cd0b7b39a22caffd0cf453&pid=1-s2.0-S2097049824000301-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictive modelling of volumetric and Marshall properties of asphalt mixtures modified with waste tire-derived char: A statistical neural network approach 使用废轮胎衍生炭改性的沥青混合物的体积和马歇尔特性的预测建模:统计神经网络方法
Pub Date : 2024-09-01 DOI: 10.1016/j.jreng.2024.04.006
Nura Shehu Aliyu Yaro , Muslich Hartadi Sutanto , Noor Zainab Habib , Aliyu Usman , Abiola Adebanjo , Surajo Abubakar Wada , Ahmad Hussaini Jagaba

The goals of this study are to assess the viability of waste tire-derived char (WTDC) as a sustainable, low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network (SCNN) model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC. The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDC-modified asphalt mixtures (WTDC-MAM). The input variables comprised waste tire char content and asphalt binder content. The output variables comprised mixture unit weight, total voids, voids filled with asphalt, Marshall stability, and flow. Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures. For predictive modeling, the SCNN model is employed, incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability. The optimal network architecture, using the collected dataset, was a 2:6:5 structure, and the neural network was trained with 60% of the data, whereas the other 20% was used for cross-validation and testing respectively. The network employed a hyperbolic tangent (tanh) activation function and a feed-forward backpropagation. According to the results, the network model could accurately predict the volumetric and Marshall properties. The predicted accuracy of SCNN was found to be as high value ​>98% and low prediction errors for both volumetric and Marshall properties. This study demonstrates WTDC's potential as a low-cost, sustainable aggregate replacement. The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices.

本研究的目的是评估废轮胎衍生炭(WTDC)作为沥青混合料的可持续、低成本细集料替代材料的可行性,并开发统计耦合神经网络(SCNN)模型,用于预测用 WTDC 改性的沥青混合料的体积和马歇尔性能。该研究以 WTDC 改性沥青混合料(WTDC-MAM)的实验室体积和马歇尔性能测试数据为基础。输入变量包括废轮胎炭含量和沥青粘结剂含量。输出变量包括混合料单位重量、总空隙、沥青填充空隙、马歇尔稳定性和流动性。统计耦合神经网络用于预测沥青混合料的体积和马歇尔特性。在预测建模方面,采用了 SCNN 模型,其中包含一个三层神经网络和预处理技术,以提高准确性和可靠性。利用收集到的数据集,最佳网络结构为 2:6:5 结构,使用 60% 的数据对神经网络进行训练,另外 20% 的数据分别用于交叉验证和测试。该网络采用了双曲正切(tanh)激活函数和前馈反向传播。结果表明,该网络模型可以准确预测体积和马歇尔特性。结果发现,SCNN 的预测准确率高达 98%,并且对体积和马歇尔特性的预测误差较小。这项研究证明了 WTDC 作为低成本、可持续骨料替代品的潜力。基于 SCNN 的预测模型证明了其效率和多功能性,并促进了可持续发展实践。
{"title":"Predictive modelling of volumetric and Marshall properties of asphalt mixtures modified with waste tire-derived char: A statistical neural network approach","authors":"Nura Shehu Aliyu Yaro ,&nbsp;Muslich Hartadi Sutanto ,&nbsp;Noor Zainab Habib ,&nbsp;Aliyu Usman ,&nbsp;Abiola Adebanjo ,&nbsp;Surajo Abubakar Wada ,&nbsp;Ahmad Hussaini Jagaba","doi":"10.1016/j.jreng.2024.04.006","DOIUrl":"10.1016/j.jreng.2024.04.006","url":null,"abstract":"<div><p>The goals of this study are to assess the viability of waste tire-derived char (WTDC) as a sustainable, low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network (SCNN) model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC. The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDC-modified asphalt mixtures (WTDC-MAM). The input variables comprised waste tire char content and asphalt binder content. The output variables comprised mixture unit weight, total voids, voids filled with asphalt, Marshall stability, and flow. Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures. For predictive modeling, the SCNN model is employed, incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability. The optimal network architecture, using the collected dataset, was a 2:6:5 structure, and the neural network was trained with 60% of the data, whereas the other 20% was used for cross-validation and testing respectively. The network employed a hyperbolic tangent (tanh) activation function and a feed-forward backpropagation. According to the results, the network model could accurately predict the volumetric and Marshall properties. The predicted accuracy of SCNN was found to be as high value ​&gt;98% and low prediction errors for both volumetric and Marshall properties. This study demonstrates WTDC's potential as a low-cost, sustainable aggregate replacement. The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices.</p></div>","PeriodicalId":100830,"journal":{"name":"Journal of Road Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2097049824000313/pdfft?md5=445f20f2035b37202997ea33eb3227f7&pid=1-s2.0-S2097049824000313-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Condition indices for rigid pavements: A comparative analysis of state DOTs using Michigan PMS data 刚性路面的状况指数:利用密歇根州 PMS 数据对各州 DOT 进行比较分析
Pub Date : 2024-09-01 DOI: 10.1016/j.jreng.2024.05.003
Rahul Raj Singh , Mumtahin Hasnat , Muhammed Emin Kutay , Syed Waqar Haider , James Bryce , Bora Cetin

Pavement infrastructure is vital in providing services and links between various sectors of society. Therefore, the preservation and maintenance of these roads are critical to attaining a pavement network in good condition throughout its service life. Various performance indicators like the international roughness index (IRI), pavement condition index (PCI), and present serviceability rating (PSR) have been used by the state department of transportation (DOT) and highway agencies for evaluating pavement surface conditions and planning future maintenance strategies. Limited data availability, multiple distresses depending on region, lack of correlation of these condition indices to maintenance strategies, and data collection limitations pose a challenge for applying these indices to local conditions. This paper compares condition indices of different states for rigid pavements. Further, using a specific condition index for local conditions is also highlighted. For this purpose, five states and their corresponding condition indices were evaluated and compared to the Michigan DOT distress index (DI). These states include Virginia, Minnesota, North Dakota, Louisiana, and Oregon. The corresponding distresses of each condition index were converted to make them compatible with the MDOT DI. This study used the MDOT's pavement management system (PMS) database to evaluate each condition index for 433 rigid pavement sections. Each distress index was plotted against MDOT DI and compared using a paired t-test. Results show that the condition indices of Virginia and Minnesota are comparable to DI in terms of the Spearman correlation value. The t-test results show that except for Virgina, condition indices from other states statistically differ from DI. Therefore, one can't use those directly for local conditions in Michigan. This paper presents the evaluation and data requirements for each condition index and its impact on selecting a maintenance treatment.

路面基础设施对于提供服务和连接社会各部门至关重要。因此,这些道路的保护和维护对于实现路面网络在整个使用寿命期间保持良好状态至关重要。各州交通部门(DOT)和公路机构一直在使用各种性能指标,如国际粗糙度指数(IRI)、路面状况指数(PCI)和当前适用性评级(PSR),来评估路面表面状况和规划未来的维护策略。有限的数据可用性、因地区而异的多重损坏、这些状况指数与维护策略缺乏相关性以及数据收集的局限性,都为将这些指数应用于当地状况带来了挑战。本文比较了不同状态下刚性路面的状况指数。此外,还重点介绍了针对当地条件使用特定状况指数的情况。为此,本文对五个州及其相应的路况指数进行了评估,并与密歇根州交通局的路况指数(DI)进行了比较。这些州包括弗吉尼亚州、明尼苏达州、北达科他州、路易斯安那州和俄勒冈州。每个状况指数的相应窘迫程度都经过转换,使其与密歇根州交通局的窘迫程度指数相匹配。本研究使用 MDOT 的路面管理系统 (PMS) 数据库来评估 433 个刚性路面路段的各项状况指数。每个窘迫指数都与 MDOT DI 相对应,并使用配对 t 检验进行比较。结果表明,就 Spearman 相关值而言,弗吉尼亚州和明尼苏达州的状况指数与 DI 具有可比性。t 检验结果表明,除弗吉尼亚州外,其他各州的状况指数与 DI 存在统计学差异。因此,我们不能将这些指数直接用于密歇根州的当地情况。本文介绍了各条件指数的评估和数据要求及其对选择维持治疗方法的影响。
{"title":"Condition indices for rigid pavements: A comparative analysis of state DOTs using Michigan PMS data","authors":"Rahul Raj Singh ,&nbsp;Mumtahin Hasnat ,&nbsp;Muhammed Emin Kutay ,&nbsp;Syed Waqar Haider ,&nbsp;James Bryce ,&nbsp;Bora Cetin","doi":"10.1016/j.jreng.2024.05.003","DOIUrl":"10.1016/j.jreng.2024.05.003","url":null,"abstract":"<div><p>Pavement infrastructure is vital in providing services and links between various sectors of society. Therefore, the preservation and maintenance of these roads are critical to attaining a pavement network in good condition throughout its service life. Various performance indicators like the international roughness index (IRI), pavement condition index (PCI), and present serviceability rating (PSR) have been used by the state department of transportation (DOT) and highway agencies for evaluating pavement surface conditions and planning future maintenance strategies. Limited data availability, multiple distresses depending on region, lack of correlation of these condition indices to maintenance strategies, and data collection limitations pose a challenge for applying these indices to local conditions. This paper compares condition indices of different states for rigid pavements. Further, using a specific condition index for local conditions is also highlighted. For this purpose, five states and their corresponding condition indices were evaluated and compared to the Michigan DOT distress index (DI). These states include Virginia, Minnesota, North Dakota, Louisiana, and Oregon. The corresponding distresses of each condition index were converted to make them compatible with the MDOT DI. This study used the MDOT's pavement management system (PMS) database to evaluate each condition index for 433 rigid pavement sections. Each distress index was plotted against MDOT DI and compared using a paired <em>t</em>-test. Results show that the condition indices of Virginia and Minnesota are comparable to DI in terms of the Spearman correlation value. The <em>t</em>-test results show that except for Virgina, condition indices from other states statistically differ from DI. Therefore, one can't use those directly for local conditions in Michigan. This paper presents the evaluation and data requirements for each condition index and its impact on selecting a maintenance treatment.</p></div>","PeriodicalId":100830,"journal":{"name":"Journal of Road Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2097049824000337/pdfft?md5=4421143f6e847a052e7a6d408c1fe9ac&pid=1-s2.0-S2097049824000337-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of the development of asphalt foaming technology 沥青发泡技术发展回顾
Pub Date : 2024-09-01 DOI: 10.1016/j.jreng.2024.04.004
Qiang Li , Shijie Song , Jiaqing Wang , Ning Wang , Shuai Zhang

To comprehensively assess the current state-of-art in asphalt foaming technology, the following four key aspects have been reviewed systematically: foaming principles, test methods, evaluation indicators, and influencing factors. Key findings reveal that asphalt foaming was primarily driven by the vaporization of water, with deterioration processes including bubble collapse and liquid film drainage. However, the current understanding of asphalt foaming principles remains limited, primarily due to difficulties in capturing and precisely measuring its microscopic behaviors during asphalt foaming process. Volume changes provided an intuitive means to evaluate the expansion capacity of asphalt and its foaming stability. Bubble evolution characteristics of foamed asphalt offered promising insights into its foaming performance. Traditional ruler and stopwatch-based assessments were being superseded by automated techniques like laser and ultrasonic ranging. Nevertheless, the current measuring equipment still lacks the capability to comprehensively evaluate the foaming effect of asphalt across various dimensions. Asphalt temperature and foaming water consumption significantly affected asphalt foaming performance, and the inclusion of foaming agents typically led to a notable increase in the half life of foamed asphalt. However, the interaction between foaming agents and asphalt, as well as the underlying mechanisms affecting the foaming effect, are still unclear and require further exploration. Future research should primarily focus on the correlation between asphalt foaming effect and mixture performance, aiming to guide the practical engineering application of foamed asphalt mixtures and enlarge the advantages of such low-emission and sustainable mixtures.

为了全面评估沥青发泡技术的现状,我们对以下四个关键方面进行了系统回顾:发泡原理、测试方法、评价指标和影响因素。主要研究结果表明,沥青发泡的主要驱动力是水的汽化,其劣化过程包括气泡崩溃和液膜流失。然而,目前对沥青发泡原理的了解仍然有限,主要原因是难以捕捉和精确测量沥青发泡过程中的微观行为。体积变化为评估沥青的膨胀能力及其发泡稳定性提供了一种直观的方法。发泡沥青的气泡演变特征为了解其发泡性能提供了很好的视角。传统的以尺子和秒表为基础的评估方法正在被激光和超声波测距等自动化技术所取代。尽管如此,目前的测量设备仍无法全面评估沥青在不同维度上的发泡效果。沥青温度和发泡用水量对沥青发泡性能有很大影响,加入发泡剂通常会显著延长发泡沥青的半衰期。然而,发泡剂与沥青之间的相互作用以及影响发泡效果的内在机制仍不清楚,需要进一步探讨。未来的研究应主要关注沥青发泡效应与混合料性能之间的相关性,旨在指导发泡沥青混合料的实际工程应用,扩大这种低排放和可持续混合料的优势。
{"title":"A review of the development of asphalt foaming technology","authors":"Qiang Li ,&nbsp;Shijie Song ,&nbsp;Jiaqing Wang ,&nbsp;Ning Wang ,&nbsp;Shuai Zhang","doi":"10.1016/j.jreng.2024.04.004","DOIUrl":"10.1016/j.jreng.2024.04.004","url":null,"abstract":"<div><p>To comprehensively assess the current state-of-art in asphalt foaming technology, the following four key aspects have been reviewed systematically: foaming principles, test methods, evaluation indicators, and influencing factors. Key findings reveal that asphalt foaming was primarily driven by the vaporization of water, with deterioration processes including bubble collapse and liquid film drainage. However, the current understanding of asphalt foaming principles remains limited, primarily due to difficulties in capturing and precisely measuring its microscopic behaviors during asphalt foaming process. Volume changes provided an intuitive means to evaluate the expansion capacity of asphalt and its foaming stability. Bubble evolution characteristics of foamed asphalt offered promising insights into its foaming performance. Traditional ruler and stopwatch-based assessments were being superseded by automated techniques like laser and ultrasonic ranging. Nevertheless, the current measuring equipment still lacks the capability to comprehensively evaluate the foaming effect of asphalt across various dimensions. Asphalt temperature and foaming water consumption significantly affected asphalt foaming performance, and the inclusion of foaming agents typically led to a notable increase in the half life of foamed asphalt. However, the interaction between foaming agents and asphalt, as well as the underlying mechanisms affecting the foaming effect, are still unclear and require further exploration. Future research should primarily focus on the correlation between asphalt foaming effect and mixture performance, aiming to guide the practical engineering application of foamed asphalt mixtures and enlarge the advantages of such low-emission and sustainable mixtures.</p></div>","PeriodicalId":100830,"journal":{"name":"Journal of Road Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2097049824000295/pdfft?md5=230c90a80023e12e80503913e6df1001&pid=1-s2.0-S2097049824000295-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-based rejuvenators in asphalt pavements: A comprehensive review and analytical study 沥青路面中的生物再生剂:全面回顾与分析研究
Pub Date : 2024-09-01 DOI: 10.1016/j.jreng.2024.04.007
Maria Chiara Cavalli , Wangjie Wu , Lily Poulikakos

The pressing demand for sustainable advancements in road infrastructure has catalyzed extensive research into environmentally conscious alternatives for the maintenance and restoration of asphalt concrete pavements. This paper offers a comprehensive review and analysis of bio-based rejuvenators as a promising avenue for enhancing the longevity and sustainability of asphalt. Through a multifaceted exploration, it delves into various aspects of this innovative approach. Providing a thorough overview of bio-based rejuvenators, the study highlights their renewable and environmentally friendly characteristics. It conducts an in-depth examination of a wide spectrum of bio-derived materials, including vegetable oils, waste-derived bio-products, and biopolymers, through a comprehensive survey. The paper evaluates how bio-based rejuvenators enhance aged asphalt binders and mixes, effectively mitigating the adverse impacts of aging. Furthermore, it investigates how these rejuvenators address environmental concerns by identifying compatibility issues, assessing long-term performance, and evaluating economic feasibility. Finally, the paper outlines potential advancements and research pathways aimed at optimizing the utilization of bio-based rejuvenators in asphalt concrete, thereby contributing to the sustainable evolution of road infrastructure.

对道路基础设施可持续发展的迫切需求推动了对具有环保意识的沥青混凝土路面养护和修复替代品的广泛研究。本文对生物再生剂进行了全面回顾和分析,认为生物再生剂是提高沥青使用寿命和可持续性的一条大有可为的途径。通过多方面的探讨,本文深入研究了这一创新方法的各个方面。本研究全面概述了生物基再生剂,强调了其可再生和环保的特点。论文通过全面调查,深入研究了各种生物衍生材料,包括植物油、废物衍生生物产品和生物聚合物。论文评估了生物再生剂如何增强老化沥青胶结料和混合料,有效减轻老化带来的不利影响。此外,论文还通过确定兼容性问题、评估长期性能和经济可行性,研究了这些再生剂如何解决环境问题。最后,论文概述了旨在优化沥青混凝土中生物再生剂使用的潜在进展和研究途径,从而为道路基础设施的可持续发展做出贡献。
{"title":"Bio-based rejuvenators in asphalt pavements: A comprehensive review and analytical study","authors":"Maria Chiara Cavalli ,&nbsp;Wangjie Wu ,&nbsp;Lily Poulikakos","doi":"10.1016/j.jreng.2024.04.007","DOIUrl":"10.1016/j.jreng.2024.04.007","url":null,"abstract":"<div><p>The pressing demand for sustainable advancements in road infrastructure has catalyzed extensive research into environmentally conscious alternatives for the maintenance and restoration of asphalt concrete pavements. This paper offers a comprehensive review and analysis of bio-based rejuvenators as a promising avenue for enhancing the longevity and sustainability of asphalt. Through a multifaceted exploration, it delves into various aspects of this innovative approach. Providing a thorough overview of bio-based rejuvenators, the study highlights their renewable and environmentally friendly characteristics. It conducts an in-depth examination of a wide spectrum of bio-derived materials, including vegetable oils, waste-derived bio-products, and biopolymers, through a comprehensive survey. The paper evaluates how bio-based rejuvenators enhance aged asphalt binders and mixes, effectively mitigating the adverse impacts of aging. Furthermore, it investigates how these rejuvenators address environmental concerns by identifying compatibility issues, assessing long-term performance, and evaluating economic feasibility. Finally, the paper outlines potential advancements and research pathways aimed at optimizing the utilization of bio-based rejuvenators in asphalt concrete, thereby contributing to the sustainable evolution of road infrastructure.</p></div>","PeriodicalId":100830,"journal":{"name":"Journal of Road Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2097049824000325/pdfft?md5=aa22b3e786193086b830613fd6aef9a7&pid=1-s2.0-S2097049824000325-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intelligent pavement condition survey: Overview of current researches and practices 智能路面状况调查:当前研究与实践概述
Pub Date : 2024-09-01 DOI: 10.1016/j.jreng.2024.04.003
Allen A. Zhang , Jing Shang , Baoxian Li , Bing Hui , Hongren Gong , Lin Li , You Zhan , Changfa Ai , Haoran Niu , Xu Chu , Zilong Nie , Zishuo Dong , Anzheng He , Hang Zhang , Dingfeng Wang , Yi Peng , Yifan Wei , Huixuan Cheng

Automated pavement condition survey is of critical importance to road network management. There are three primary tasks involved in pavement condition surveys, namely data collection, data processing and condition evaluation. Artificial intelligence (AI) has achieved many breakthroughs in almost every aspect of modern technology over the past decade, and undoubtedly offers a more robust approach to automated pavement condition survey. This article aims to provide a comprehensive review on data collection systems, data processing algorithms and condition evaluation methods proposed between 2010 and 2023 for intelligent pavement condition survey. In particular, the data collection system includes AI-driven hardware devices and automated pavement data collection vehicles. The AI-driven hardware devices including right-of-way (ROW) cameras, ground penetrating radar (GPR) devices, light detection and ranging (LiDAR) devices, and advanced laser imaging systems, etc. These different hardware components can be selectively mounted on a vehicle to simultaneously collect multimedia information about the pavement. In addition, this article pays close attention to the application of artificial intelligence methods in detecting pavement distresses, measuring pavement roughness, identifying pavement rutting, analyzing skid resistance and evaluating structural strength of pavements. Based upon the analysis of a variety of the state-of-the-art artificial intelligence methodologies, remaining challenges and future needs with respect to intelligent pavement condition survey are discussed eventually.

自动路面状况调查对路网管理至关重要。路面状况调查涉及三项主要任务,即数据收集、数据处理和状况评估。人工智能(AI)在过去十年中几乎在现代技术的各个方面都取得了许多突破,无疑为路面状况自动调查提供了一种更强大的方法。本文旨在对 2010 年至 2023 年间提出的智能路面状况调查的数据采集系统、数据处理算法和状况评估方法进行全面评述。其中,数据采集系统包括人工智能驱动的硬件设备和自动路面数据采集车。人工智能驱动的硬件设备包括路权(ROW)摄像机、地面穿透雷达(GPR)设备、光探测和测距(LiDAR)设备以及先进的激光成像系统等。这些不同的硬件组件可选择性地安装在车辆上,以同时收集路面的多媒体信息。此外,本文还密切关注人工智能方法在检测路面病害、测量路面粗糙度、识别路面车辙、分析抗滑性和评估路面结构强度方面的应用。在对各种最先进的人工智能方法进行分析的基础上,最终讨论了智能路面状况调查方面仍然存在的挑战和未来的需求。
{"title":"Intelligent pavement condition survey: Overview of current researches and practices","authors":"Allen A. Zhang ,&nbsp;Jing Shang ,&nbsp;Baoxian Li ,&nbsp;Bing Hui ,&nbsp;Hongren Gong ,&nbsp;Lin Li ,&nbsp;You Zhan ,&nbsp;Changfa Ai ,&nbsp;Haoran Niu ,&nbsp;Xu Chu ,&nbsp;Zilong Nie ,&nbsp;Zishuo Dong ,&nbsp;Anzheng He ,&nbsp;Hang Zhang ,&nbsp;Dingfeng Wang ,&nbsp;Yi Peng ,&nbsp;Yifan Wei ,&nbsp;Huixuan Cheng","doi":"10.1016/j.jreng.2024.04.003","DOIUrl":"10.1016/j.jreng.2024.04.003","url":null,"abstract":"<div><p>Automated pavement condition survey is of critical importance to road network management. There are three primary tasks involved in pavement condition surveys, namely data collection, data processing and condition evaluation. Artificial intelligence (AI) has achieved many breakthroughs in almost every aspect of modern technology over the past decade, and undoubtedly offers a more robust approach to automated pavement condition survey. This article aims to provide a comprehensive review on data collection systems, data processing algorithms and condition evaluation methods proposed between 2010 and 2023 for intelligent pavement condition survey. In particular, the data collection system includes AI-driven hardware devices and automated pavement data collection vehicles. The AI-driven hardware devices including right-of-way (ROW) cameras, ground penetrating radar (GPR) devices, light detection and ranging (LiDAR) devices, and advanced laser imaging systems, etc. These different hardware components can be selectively mounted on a vehicle to simultaneously collect multimedia information about the pavement. In addition, this article pays close attention to the application of artificial intelligence methods in detecting pavement distresses, measuring pavement roughness, identifying pavement rutting, analyzing skid resistance and evaluating structural strength of pavements. Based upon the analysis of a variety of the state-of-the-art artificial intelligence methodologies, remaining challenges and future needs with respect to intelligent pavement condition survey are discussed eventually.</p></div>","PeriodicalId":100830,"journal":{"name":"Journal of Road Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2097049824000283/pdfft?md5=07f0224e797daa9ef100c0aefc5a8785&pid=1-s2.0-S2097049824000283-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced asphalt dynamic modulus prediction: A detailed analysis of artificial hummingbird algorithm-optimised boosted trees 增强型沥青动态模量预测:人工蜂鸟算法优化提升树的详细分析
Pub Date : 2024-06-01 DOI: 10.1016/j.jreng.2024.05.001
Ikenna D. Uwanuakwa , Ilham Yahya Amir , Lyce Ndolo Umba

This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree (AHA-boosted) model for predicting the dynamic modulus (E∗) of hot mix asphalt concrete. Using a substantial dataset from NCHRP Report-547, the model was trained and rigorously tested. Performance metrics, specifically RMSE, MAE, and R2, were employed to assess the model's predictive accuracy, robustness, and generalisability. When benchmarked against well-established models like support vector machines (SVM) and gaussian process regression (GPR), the AHA-boosted model demonstrated enhanced performance. It achieved R2 values of 0.997 in training and 0.974 in testing, using the traditional Witczak NCHRP 1-40D model inputs. Incorporating features such as test temperature, frequency, and asphalt content led to a 1.23% increase in the test R2, signifying an improvement in the model's accuracy. The study also explored feature importance and sensitivity through SHAP and permutation importance plots, highlighting binder complex modulus |G∗| as a key predictor. Although the AHA-boosted model shows promise, a slight decrease in R2 from training to testing indicates a need for further validation. Overall, this study confirms the AHA-boosted model as a highly accurate and robust tool for predicting the dynamic modulus of hot mix asphalt concrete, making it a valuable asset for pavement engineering.

本研究介绍并评估了用于预测热拌沥青混凝土动态模量(E∗)的新型人工蜂鸟算法优化提升树(AHA-boosted)模型。利用 NCHRP 报告-547 中的大量数据集,对模型进行了训练和严格测试。采用性能指标,特别是 RMSE、MAE 和 R2,来评估模型的预测准确性、稳健性和通用性。在与支持向量机(SVM)和高斯过程回归(GPR)等成熟模型进行比对时,AHA 增强模型表现出更高的性能。使用传统的 Witczak NCHRP 1-40D 模型输入,该模型在训练和测试中的 R2 值分别达到 0.997 和 0.974。加入测试温度、频率和沥青含量等特征后,测试 R2 增加了 1.23%,表明模型的准确性有所提高。该研究还通过 SHAP 和置换重要性图探讨了特征的重要性和敏感性,并强调粘结剂复合模量 |G∗| 是一个关键的预测因子。虽然 AHA 增强模型显示出良好的前景,但从训练到测试,R2 略有下降,这表明需要进一步验证。总之,这项研究证实了 AHA 增强模型是预测热拌沥青混凝土动态模量的一种高度准确和稳健的工具,使其成为路面工程的宝贵财富。
{"title":"Enhanced asphalt dynamic modulus prediction: A detailed analysis of artificial hummingbird algorithm-optimised boosted trees","authors":"Ikenna D. Uwanuakwa ,&nbsp;Ilham Yahya Amir ,&nbsp;Lyce Ndolo Umba","doi":"10.1016/j.jreng.2024.05.001","DOIUrl":"https://doi.org/10.1016/j.jreng.2024.05.001","url":null,"abstract":"<div><p>This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree (AHA-boosted) model for predicting the dynamic modulus (<em>E</em>∗) of hot mix asphalt concrete. Using a substantial dataset from NCHRP Report-547, the model was trained and rigorously tested. Performance metrics, specifically RMSE, MAE, and <em>R</em><sup>2</sup>, were employed to assess the model's predictive accuracy, robustness, and generalisability. When benchmarked against well-established models like support vector machines (SVM) and gaussian process regression (GPR), the AHA-boosted model demonstrated enhanced performance. It achieved <em>R</em><sup>2</sup> values of 0.997 in training and 0.974 in testing, using the traditional Witczak NCHRP 1-40D model inputs. Incorporating features such as test temperature, frequency, and asphalt content led to a 1.23% increase in the test <em>R</em><sup>2</sup>, signifying an improvement in the model's accuracy. The study also explored feature importance and sensitivity through SHAP and permutation importance plots, highlighting binder complex modulus |<em>G</em>∗| as a key predictor. Although the AHA-boosted model shows promise, a slight decrease in <em>R</em><sup>2</sup> from training to testing indicates a need for further validation. Overall, this study confirms the AHA-boosted model as a highly accurate and robust tool for predicting the dynamic modulus of hot mix asphalt concrete, making it a valuable asset for pavement engineering.</p></div>","PeriodicalId":100830,"journal":{"name":"Journal of Road Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2097049824000167/pdfft?md5=a6da64310fa9460fa9ec6b5fca7d08ba&pid=1-s2.0-S2097049824000167-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141485615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research status, hot spots, difficulties and future development direction of microbial geoengineering 微生物地球工程的研究现状、热点、难点及未来发展方向
Pub Date : 2024-06-01 DOI: 10.1016/j.jreng.2024.04.001
Yingxin Zhou , Zhiqing Li , Peng Zhang , Qi Wang , Weilin Pan , Shuangjiao Wang , Xiongyao Xie

Microbial geoengineering technology, as a new eco-friendly rock and soil improvement and reinforcement technology, has a wide application prospect. However, this technology still has many deficiencies and is difficult to achieve efficient curing, which has become the bottleneck of large-scale field application. This paper reviews the research status, hot spots, difficulties and future development direction microbial induced calcium carbonate precipitation (MICP) technology. The principle of solidification and the physical and mechanical properties of improved rock and soil are systematically summarized. The solidification efficiency is mainly affected by the reactant itself and the external environment. At present, the MICP technology has been preliminarily applied in the fields of soil solidification, crack repair, anti-seepage treatment, pollution repair and microbial cement. However, the technology is currently mainly limited to the laboratory level due to the difficulty of homogeneous mineralization, uneconomical reactants, short microbial activity period and large environmental interference, incidental toxicity of metabolites and poor field application. Future directions include improving the uniformity of mineralization by improving grouting methods, improving urease persistence by improving urease activity, and improving the adaptability of bacteria to the environment by optimizing bacterial species. Finally, the authors point out the economic advantages of combining soybean peptone, soybean meal and cottonseed as carbon source with phosphogypsum as calcium source to induce CaCO3.

微生物土工技术作为一种新型生态友好型岩土改良加固技术,具有广阔的应用前景。然而,该技术仍存在诸多不足,难以实现高效固化,成为大规模野外应用的瓶颈。本文综述了微生物诱导碳酸钙沉淀(MICP)技术的研究现状、热点、难点及未来发展方向。系统总结了固化原理以及改良岩土的物理力学性能。固化效率主要受反应物本身和外部环境的影响。目前,MICP 技术已初步应用于土壤固化、裂缝修复、防渗处理、污染修复和微生物水泥等领域。但是,由于矿化难均匀、反应物不经济、微生物活动期短和环境干扰大、代谢产物附带毒性和现场应用性差等原因,目前该技术主要局限于实验室层面。未来的研究方向包括:通过改进灌浆方法来提高矿化的均匀性;通过提高脲酶活性来提高脲酶的持久性;通过优化细菌种类来提高细菌对环境的适应性。最后,作者指出,将大豆蛋白胨、豆粕和棉籽作为碳源与磷石膏作为钙源结合起来诱导 CaCO3 具有经济优势。
{"title":"Research status, hot spots, difficulties and future development direction of microbial geoengineering","authors":"Yingxin Zhou ,&nbsp;Zhiqing Li ,&nbsp;Peng Zhang ,&nbsp;Qi Wang ,&nbsp;Weilin Pan ,&nbsp;Shuangjiao Wang ,&nbsp;Xiongyao Xie","doi":"10.1016/j.jreng.2024.04.001","DOIUrl":"10.1016/j.jreng.2024.04.001","url":null,"abstract":"<div><p>Microbial geoengineering technology, as a new eco-friendly rock and soil improvement and reinforcement technology, has a wide application prospect. However, this technology still has many deficiencies and is difficult to achieve efficient curing, which has become the bottleneck of large-scale field application. This paper reviews the research status, hot spots, difficulties and future development direction microbial induced calcium carbonate precipitation (MICP) technology. The principle of solidification and the physical and mechanical properties of improved rock and soil are systematically summarized. The solidification efficiency is mainly affected by the reactant itself and the external environment. At present, the MICP technology has been preliminarily applied in the fields of soil solidification, crack repair, anti-seepage treatment, pollution repair and microbial cement. However, the technology is currently mainly limited to the laboratory level due to the difficulty of homogeneous mineralization, uneconomical reactants, short microbial activity period and large environmental interference, incidental toxicity of metabolites and poor field application. Future directions include improving the uniformity of mineralization by improving grouting methods, improving urease persistence by improving urease activity, and improving the adaptability of bacteria to the environment by optimizing bacterial species. Finally, the authors point out the economic advantages of combining soybean peptone, soybean meal and cottonseed as carbon source with phosphogypsum as calcium source to induce CaCO<sub>3</sub>.</p></div>","PeriodicalId":100830,"journal":{"name":"Journal of Road Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2097049824000143/pdfft?md5=ab16ad2cc5c13736a5907719d6e67487&pid=1-s2.0-S2097049824000143-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141053147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible pavement longitudinal joint quality evaluation using non-destructive testing 利用无损检测评估柔性路面纵向接缝质量
Pub Date : 2024-06-01 DOI: 10.1016/j.jreng.2024.03.001
Hamad Bin Muslim , Syed Waqar Haider , Lev Khazanovich

Longitudinal joint construction quality is critical to the life of flexible pavements. Maintaining deteriorated longitudinal joints has become a challenge for many highway agencies. Improving the joint's quality through better compaction during construction can help achieve flexible pavements with longer service lives and less maintenance. Current quality control (QC) and quality assurance (QA) plans provide limited coverage. Consequently, the risk of missing areas with poor joint compaction is significant. A density profiling system (DPS) is a non-destructive alternative to conventional destructive evaluation methods. It can provide quick and continuous real-time coverage of the compaction during construction in dielectrics. The paper presents several case studies comparing various types of longitudinal joints and demonstrating the use of DPS to evaluate the joint's compaction quality. The paper shows that dielectric measurements can provide valuable insight into the ability of various construction techniques to achieve adequate levels of compaction at the longitudinal joint. The paper proposes a dielectric-based longitudinal joint quality index (LJQI) to evaluate the relative compaction of the joint during construction. It also shows that adopting DPS for assessing the compaction of longitudinal joints can minimize the risk of agencies accepting poorly constructed joints, identify locations of poor quality during construction, and achieve better-performing flexible pavements.

纵向接缝的施工质量对柔性路面的使用寿命至关重要。维护老化的纵向接缝已成为许多公路机构面临的挑战。通过在施工过程中更好地压实来提高接缝质量,有助于实现使用寿命更长、维护更少的柔性路面。目前的质量控制(QC)和质量保证(QA)计划覆盖范围有限。因此,在接缝压实不佳的情况下,遗漏区域的风险很大。密度曲线测试系统 (DPS) 是传统破坏性评估方法的非破坏性替代方法。它可以在电介质施工过程中快速、连续地实时覆盖压实情况。本文介绍了几个案例研究,比较了各种类型的纵向接缝,并演示了如何使用 DPS 评估接缝的压实质量。论文表明,介电测量可为了解各种施工技术在纵向接缝处达到适当压实水平的能力提供有价值的见解。论文提出了一种基于介电测量的纵向接缝质量指标(LJQI),用于评估施工过程中接缝的相对压实度。它还表明,采用 DPS 评估纵向接缝的压实度可以最大限度地降低机构接受施工质量差的接缝的风险,在施工过程中识别质量差的位置,并实现性能更好的柔性路面。
{"title":"Flexible pavement longitudinal joint quality evaluation using non-destructive testing","authors":"Hamad Bin Muslim ,&nbsp;Syed Waqar Haider ,&nbsp;Lev Khazanovich","doi":"10.1016/j.jreng.2024.03.001","DOIUrl":"https://doi.org/10.1016/j.jreng.2024.03.001","url":null,"abstract":"<div><p>Longitudinal joint construction quality is critical to the life of flexible pavements. Maintaining deteriorated longitudinal joints has become a challenge for many highway agencies. Improving the joint's quality through better compaction during construction can help achieve flexible pavements with longer service lives and less maintenance. Current quality control (QC) and quality assurance (QA) plans provide limited coverage. Consequently, the risk of missing areas with poor joint compaction is significant. A density profiling system (DPS) is a non-destructive alternative to conventional destructive evaluation methods. It can provide quick and continuous real-time coverage of the compaction during construction in dielectrics. The paper presents several case studies comparing various types of longitudinal joints and demonstrating the use of DPS to evaluate the joint's compaction quality. The paper shows that dielectric measurements can provide valuable insight into the ability of various construction techniques to achieve adequate levels of compaction at the longitudinal joint. The paper proposes a dielectric-based longitudinal joint quality index (LJQI) to evaluate the relative compaction of the joint during construction. It also shows that adopting DPS for assessing the compaction of longitudinal joints can minimize the risk of agencies accepting poorly constructed joints, identify locations of poor quality during construction, and achieve better-performing flexible pavements.</p></div>","PeriodicalId":100830,"journal":{"name":"Journal of Road Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2097049824000179/pdfft?md5=ba2eda995a98d17440a17f2b0f7fd00a&pid=1-s2.0-S2097049824000179-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141482659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and optimization of object detection technology in pavement engineering: A literature review 土木工程中物体探测技术的开发与优化:文献综述
Pub Date : 2024-06-01 DOI: 10.1016/j.jreng.2024.01.006
Hui Yao , Yaning Fan , Yanhao Liu , Dandan Cao , Ning Chen , Tiancheng Luo , Jingyu Yang , Xueyi Hu , Jie Ji , Zhanping You

Due to the rapid advancement of the transportation industry and the continual increase in pavement infrastructure, it is difficult to keep up with the huge road maintenance task by relying only on the traditional manual detection method. Intelligent pavement detection technology with deep learning techniques is available for the research and industry areas by the gradual development of computer vision technology. Due to the different characteristics of pavement distress and the uncertainty of the external environment, this kind of object detection technology for distress classification and location still faces great challenges. This paper discusses the development of object detection technology and analyzes classical convolutional neural network (CNN) architecture. In addition to the one-stage and two-stage object detection frameworks, object detection without anchor frames is introduced, which is divided according to whether the anchor box is used or not. This paper also introduces attention mechanisms based on convolutional neural networks and emphasizes the performance of these mechanisms to further enhance the accuracy of object recognition. Lightweight network architecture is introduced for mobile and industrial deployment. Since stereo cameras and sensors are rapidly developed, a detailed summary of three-dimensional object detection algorithms is also provided. While reviewing the history of the development of object detection, the scope of this review is not only limited to the area of pavement crack detection but also guidance for researchers in related fields is shared.

由于交通行业的快速发展和路面基础设施的不断增加,仅依靠传统的人工检测方法已难以跟上庞大的道路维护任务。随着计算机视觉技术的逐步发展,采用深度学习技术的智能路面检测技术已经可以应用于科研和工业领域。由于路面病害的不同特点和外部环境的不确定性,这种用于病害分类和定位的物体检测技术仍然面临着巨大的挑战。本文讨论了物体检测技术的发展,并分析了经典的卷积神经网络(CNN)架构。除了单级和两级物体检测框架外,本文还介绍了无锚框物体检测,并根据是否使用锚框进行了划分。本文还介绍了基于卷积神经网络的注意力机制,并强调了这些机制的性能,以进一步提高物体识别的准确性。本文还介绍了适用于移动和工业部署的轻量级网络架构。由于立体相机和传感器发展迅速,本文还对三维物体检测算法进行了详细总结。在回顾物体检测发展历史的同时,本综述的范围不仅限于路面裂缝检测领域,还为相关领域的研究人员提供了指导。
{"title":"Development and optimization of object detection technology in pavement engineering: A literature review","authors":"Hui Yao ,&nbsp;Yaning Fan ,&nbsp;Yanhao Liu ,&nbsp;Dandan Cao ,&nbsp;Ning Chen ,&nbsp;Tiancheng Luo ,&nbsp;Jingyu Yang ,&nbsp;Xueyi Hu ,&nbsp;Jie Ji ,&nbsp;Zhanping You","doi":"10.1016/j.jreng.2024.01.006","DOIUrl":"10.1016/j.jreng.2024.01.006","url":null,"abstract":"<div><p>Due to the rapid advancement of the transportation industry and the continual increase in pavement infrastructure, it is difficult to keep up with the huge road maintenance task by relying only on the traditional manual detection method. Intelligent pavement detection technology with deep learning techniques is available for the research and industry areas by the gradual development of computer vision technology. Due to the different characteristics of pavement distress and the uncertainty of the external environment, this kind of object detection technology for distress classification and location still faces great challenges. This paper discusses the development of object detection technology and analyzes classical convolutional neural network (CNN) architecture. In addition to the one-stage and two-stage object detection frameworks, object detection without anchor frames is introduced, which is divided according to whether the anchor box is used or not. This paper also introduces attention mechanisms based on convolutional neural networks and emphasizes the performance of these mechanisms to further enhance the accuracy of object recognition. Lightweight network architecture is introduced for mobile and industrial deployment. Since stereo cameras and sensors are rapidly developed, a detailed summary of three-dimensional object detection algorithms is also provided. While reviewing the history of the development of object detection, the scope of this review is not only limited to the area of pavement crack detection but also guidance for researchers in related fields is shared.</p></div>","PeriodicalId":100830,"journal":{"name":"Journal of Road Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2097049824000192/pdfft?md5=7ac193e5781523ff276bd682d411097f&pid=1-s2.0-S2097049824000192-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141274406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Road Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1