Attributing climate variability, land use change, and other human activities to the variations of the runoff-sediment processes in the Upper Huaihe River Basin, China
Chong Wei , Xiaohua Dong , Yaoming Ma , Kang Zhang , Zhigang Xie , Zhikai Xia , Bob Su
{"title":"Attributing climate variability, land use change, and other human activities to the variations of the runoff-sediment processes in the Upper Huaihe River Basin, China","authors":"Chong Wei , Xiaohua Dong , Yaoming Ma , Kang Zhang , Zhigang Xie , Zhikai Xia , Bob Su","doi":"10.1016/j.ejrh.2024.101955","DOIUrl":null,"url":null,"abstract":"<div><h3>Study regions</h3><p>The Wangjiaba (WJB) watershed, located in the upper Huaihe River Basin in China.</p></div><div><h3>Study focus</h3><p>An attributing framework has been proposed combining the Double Mass Curve (DMC) and the Soil and Water Assessment Tools (SWAT) model to identify the contributions of climate variability, Land use (LU) change, and Other Human Activities (OHA) to the variations in runoff-sediment processes within the WJB.</p></div><div><h3>New hydrological insights for the region</h3><p>The studied period was able to be separated into three sub-periods (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>: 1981–1991, <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>: 1992–2009, and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>: 2010–2019) using the DMC, and the SWAT model could simulate runoff and Sediment Yields Load (SYL) properly during different sub-periods after calibration. Generally, the runoff, SYL, and Suspended Sediment Concentration (SSC) within the WJB exhibited a decrease trend with a change rate of −1.3 mm a<sup>−1</sup>, −8.49×10<sup>4</sup> t a<sup>−1</sup>, and −0.01 kg m<sup>−3</sup> a<sup>−1</sup>, respectively. Substantially, climate variability decreases runoff, SYL, and SSC from <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> to <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>; LU change decreases runoff, SYL, and SSC from <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> to <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>; OHA decreases SYL and SSC from <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> to <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, but increases SYL and SSC from <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> to <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>. It should be noticed that the OHA has increased the SYL significantly especially over the downstream of WJB from <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> to <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>. It is essential to enhance soil erosion prevention measures in the future under the background of global climate change.</p></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"56 ","pages":"Article 101955"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214581824003045/pdfft?md5=8163ab38bb95d3cb9f7869ed824e4874&pid=1-s2.0-S2214581824003045-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581824003045","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Study regions
The Wangjiaba (WJB) watershed, located in the upper Huaihe River Basin in China.
Study focus
An attributing framework has been proposed combining the Double Mass Curve (DMC) and the Soil and Water Assessment Tools (SWAT) model to identify the contributions of climate variability, Land use (LU) change, and Other Human Activities (OHA) to the variations in runoff-sediment processes within the WJB.
New hydrological insights for the region
The studied period was able to be separated into three sub-periods (: 1981–1991, : 1992–2009, and : 2010–2019) using the DMC, and the SWAT model could simulate runoff and Sediment Yields Load (SYL) properly during different sub-periods after calibration. Generally, the runoff, SYL, and Suspended Sediment Concentration (SSC) within the WJB exhibited a decrease trend with a change rate of −1.3 mm a−1, −8.49×104 t a−1, and −0.01 kg m−3 a−1, respectively. Substantially, climate variability decreases runoff, SYL, and SSC from to ; LU change decreases runoff, SYL, and SSC from to ; OHA decreases SYL and SSC from to , but increases SYL and SSC from to . It should be noticed that the OHA has increased the SYL significantly especially over the downstream of WJB from to . It is essential to enhance soil erosion prevention measures in the future under the background of global climate change.
期刊介绍:
Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.