Surfactant effects in functionalized multiwall carbon nanotube-filled phase change materials

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Chemistry and Physics Pub Date : 2024-09-07 DOI:10.1016/j.matchemphys.2024.129931
{"title":"Surfactant effects in functionalized multiwall carbon nanotube-filled phase change materials","authors":"","doi":"10.1016/j.matchemphys.2024.129931","DOIUrl":null,"url":null,"abstract":"<div><p>Energy storage using phase change materials (PCM) is an efficient way to harness thermal energy from solar energy due to its higher storage density, particularly for medium-temperature applications. However, the PCMs have lower thermal conductivity; owing to this, the thermal performance and heat transfer rate are inadequate. To address this challenge, the current work explores the integration of carbon-based nanoparticles into the PCM to enhance thermal conductivity and overall performance. In the present study, a novel functionalized multi-walled carbon nanotube (FMWCNT) dispersed in organic PCM in different weight fractions (0.1, 0.3, 0.5, 0.7 and 1.0 %) with and without surfactant is investigated. A two-step technique was employed to prepare nano enhanced phase change material (NePCM), with subsequent assessment of its thermophysical properties. Findings reveal a remarkable enhancement in thermal conductivity, with a staggering 150.7 % at 1.0 wt% FMWCNT without surfactant and a substantial 110.2 % improvement in the presence of surfactant. Furthermore, the Ultraviolet–visible spectrum (UV–Vis) demonstrates an 84.56 % reduction in transmittance compared to pure organic PCM. Furthermore, the prepared NePCM are thermally stable up to 405 °C and no chemical reaction takes place. Importantly, the best optimal nanocomposites chemical and thermal properties were evaluated for 500 heating and cooling cycles to ensure reliability. Remarkably, the inclusion of surfactant on FMWCNT enhanced PCM has minimal impact on thermophysical properties.</p></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0254058424010599/pdfft?md5=eb587f2629b0d1fc8016e841fff483fe&pid=1-s2.0-S0254058424010599-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424010599","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Energy storage using phase change materials (PCM) is an efficient way to harness thermal energy from solar energy due to its higher storage density, particularly for medium-temperature applications. However, the PCMs have lower thermal conductivity; owing to this, the thermal performance and heat transfer rate are inadequate. To address this challenge, the current work explores the integration of carbon-based nanoparticles into the PCM to enhance thermal conductivity and overall performance. In the present study, a novel functionalized multi-walled carbon nanotube (FMWCNT) dispersed in organic PCM in different weight fractions (0.1, 0.3, 0.5, 0.7 and 1.0 %) with and without surfactant is investigated. A two-step technique was employed to prepare nano enhanced phase change material (NePCM), with subsequent assessment of its thermophysical properties. Findings reveal a remarkable enhancement in thermal conductivity, with a staggering 150.7 % at 1.0 wt% FMWCNT without surfactant and a substantial 110.2 % improvement in the presence of surfactant. Furthermore, the Ultraviolet–visible spectrum (UV–Vis) demonstrates an 84.56 % reduction in transmittance compared to pure organic PCM. Furthermore, the prepared NePCM are thermally stable up to 405 °C and no chemical reaction takes place. Importantly, the best optimal nanocomposites chemical and thermal properties were evaluated for 500 heating and cooling cycles to ensure reliability. Remarkably, the inclusion of surfactant on FMWCNT enhanced PCM has minimal impact on thermophysical properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
功能化多壁碳纳米管填充相变材料中的表面活性剂效应
使用相变材料(PCM)储能是利用太阳能热能的一种有效方法,因为它的储能密度较高,尤其适用于中温应用。然而,相变材料的热传导率较低,因此热性能和热传导率不足。为了应对这一挑战,目前的研究工作探索了将碳基纳米颗粒融入 PCM 的方法,以提高导热性和整体性能。在本研究中,研究了一种新型功能化多壁碳纳米管(FMWCNT),它以不同的重量分数(0.1%、0.3%、0.5%、0.7% 和 1.0%)分散在有机 PCM 中,添加和不添加表面活性剂。采用两步法制备了纳米增强相变材料(NePCM),随后对其热物理性质进行了评估。研究结果表明,在不添加表面活性剂的情况下,1.0 wt% 的 FMWCNT 的热导率提高了 150.7%,而在添加表面活性剂的情况下,热导率大幅提高了 110.2%。此外,紫外可见光谱(UV-Vis)显示,与纯有机 PCM 相比,透射率降低了 84.56%。此外,所制备的 NePCM 具有高达 405 °C 的热稳定性,并且不会发生化学反应。重要的是,对最佳纳米复合材料的化学和热性能进行了 500 次加热和冷却循环评估,以确保其可靠性。值得注意的是,在 FMWCNT 增强型 PCM 中加入表面活性剂对热物理性能的影响微乎其微。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
期刊最新文献
Preparation of Bi2CrO6/CuO heterostructure nanocomposite to increase methylene blue decomposition under visible light irradiation Experimental study on corrosion behavior and failure mechanism of bolts in acidic environment Crystalline structure and dielectric relaxor behavior of MnO2-modified 0.8BaTiO3-0.2BiScO3 ceramics for energy storage application Effects of laser energy density on the resistance to wear and cavitation erosion of FeCrNiMnAl high entropy alloy coatings by laser cladding Enhancing microstructure, nanomechanical and tribological properties of TiAl alloy processed by spark plasma sintering with Si3N4 ceramic particulates addition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1