Hydrostatic failure behavior of externally pressurized ceramic egg-shaped shells

IF 3 2区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Pressure Vessels and Piping Pub Date : 2024-09-07 DOI:10.1016/j.ijpvp.2024.105313
Huinan Kang , Jian Zhang , Yunsen Hu , Ming Zhan , Xilu Zhao
{"title":"Hydrostatic failure behavior of externally pressurized ceramic egg-shaped shells","authors":"Huinan Kang ,&nbsp;Jian Zhang ,&nbsp;Yunsen Hu ,&nbsp;Ming Zhan ,&nbsp;Xilu Zhao","doi":"10.1016/j.ijpvp.2024.105313","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the failure behavior of ceramic egg-shaped shells under external pressure. Four ceramic egg-shaped shells with two thicknesses were manufactured and then subjected to geometric measurements, hydrostatic pressure tests, analytical validations, and numerical simulations. The experimental results were compared with the simulation results to validate the feasibility of the numerical modeling. Furthermore, the effects of thickness and shape on ceramic egg-shaped shells were explored. The research findings indicate that ceramic egg-shaped shells have excellent compressive properties. The performance ratio of these ceramic egg-shaped shells is approximately 10 and 5 times higher than those of resin and steel egg-shaped shells, respectively. This finding highlights the crucial role that affordable ceramic materials can play in facilitating the widespread use of submersibles in deep waters.</p></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"212 ","pages":"Article 105313"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030801612400190X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the failure behavior of ceramic egg-shaped shells under external pressure. Four ceramic egg-shaped shells with two thicknesses were manufactured and then subjected to geometric measurements, hydrostatic pressure tests, analytical validations, and numerical simulations. The experimental results were compared with the simulation results to validate the feasibility of the numerical modeling. Furthermore, the effects of thickness and shape on ceramic egg-shaped shells were explored. The research findings indicate that ceramic egg-shaped shells have excellent compressive properties. The performance ratio of these ceramic egg-shaped shells is approximately 10 and 5 times higher than those of resin and steel egg-shaped shells, respectively. This finding highlights the crucial role that affordable ceramic materials can play in facilitating the widespread use of submersibles in deep waters.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外部加压陶瓷蛋形外壳的静水失效行为
本研究探讨了陶瓷蛋形外壳在外部压力作用下的失效行为。研究人员制造了四种厚度的陶瓷蛋形外壳,并对其进行了几何测量、静水压力测试、分析验证和数值模拟。实验结果与模拟结果进行了比较,以验证数值建模的可行性。此外,还探讨了厚度和形状对陶瓷蛋形外壳的影响。研究结果表明,陶瓷蛋形外壳具有优异的抗压性能。这些陶瓷蛋形外壳的性能比分别比树脂蛋形外壳和钢蛋形外壳高出约 10 倍和 5 倍。这一发现凸显了经济实惠的陶瓷材料在促进深水潜水器广泛使用方面可发挥的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
13.30%
发文量
208
审稿时长
17 months
期刊介绍: Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants. The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome: • Pressure vessel engineering • Structural integrity assessment • Design methods • Codes and standards • Fabrication and welding • Materials properties requirements • Inspection and quality management • Maintenance and life extension • Ageing and environmental effects • Life management Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time. International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.
期刊最新文献
Enhanced creep lifetime in P91 steel weldments via stabilizing tempered martensite structure Study on stress concentration and fatigue life of tubing with slip indentation Failure mechanisms of fusion-bonded reinforcement joints in reinforced thermoplastic pipes under uniaxial tensile conditions A comprehensive finite element framework for modeling of PEX-Al-PEX composite pipes Effects of different types of corrosion on seismic performance of circular hollow section T-joints subjected to coupling load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1