Comparative analysis of offshore wind turbine blade maintenance: RL-based and classical strategies for sustainable approach

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL Reliability Engineering & System Safety Pub Date : 2024-09-03 DOI:10.1016/j.ress.2024.110477
{"title":"Comparative analysis of offshore wind turbine blade maintenance: RL-based and classical strategies for sustainable approach","authors":"","doi":"10.1016/j.ress.2024.110477","DOIUrl":null,"url":null,"abstract":"<div><p>This study compares traditional methods like Corrective Maintenance (CM), Scheduled Maintenance (SM), and Condition-based Maintenance (CbM) with Reinforcement Learning (RL)-based offshore wind turbine (OWT) blade maintenance strategies. In order to address the dual challenge of minimizing carbon output while managing maintenance costs and operational efficiency, the study presents a mathematical model intended to estimate carbon emissions associated with OWT maintenance activities. The ability of the RL-based strategy to reduce the risk of fatigue failure in OWT blades and account for wind speed variability in maintenance schedule optimization is assessed. In order to provide a sustainable maintenance solution this strategy balances the trade-offs between economic profit and environmental effect. The findings demonstrate how RL can provide a balanced approach to maintenance that enhances both operational performance and environmental sustainability.</p></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024005490","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study compares traditional methods like Corrective Maintenance (CM), Scheduled Maintenance (SM), and Condition-based Maintenance (CbM) with Reinforcement Learning (RL)-based offshore wind turbine (OWT) blade maintenance strategies. In order to address the dual challenge of minimizing carbon output while managing maintenance costs and operational efficiency, the study presents a mathematical model intended to estimate carbon emissions associated with OWT maintenance activities. The ability of the RL-based strategy to reduce the risk of fatigue failure in OWT blades and account for wind speed variability in maintenance schedule optimization is assessed. In order to provide a sustainable maintenance solution this strategy balances the trade-offs between economic profit and environmental effect. The findings demonstrate how RL can provide a balanced approach to maintenance that enhances both operational performance and environmental sustainability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海上风力涡轮机叶片维护的比较分析:基于 RL 和传统策略的可持续方法
本研究将纠正性维护(CM)、计划维护(SM)和基于状态的维护(CbM)等传统方法与基于强化学习(RL)的海上风力涡轮机(OWT)叶片维护策略进行了比较。为了应对在管理维护成本和运营效率的同时最大限度减少碳排放的双重挑战,该研究提出了一个数学模型,旨在估算与 OWT 维护活动相关的碳排放量。研究还评估了基于 RL 的策略在维护计划优化中降低风力发电机叶片疲劳故障风险和考虑风速变化的能力。为了提供可持续的维护解决方案,该策略平衡了经济利润和环境影响之间的权衡。研究结果表明,RL 可以提供一种平衡的维护方法,从而提高运行性能和环境可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
期刊最新文献
Employing the cluster of node cut sets to improve the robustness of the network measured by connectivity Preventive maintenance strategy for multi-component systems in dynamic risk assessment A new reliability health status assessment model for complex systems based on belief rule base Toward the resilience of UAV swarms with percolation theory under attacks Health management of power batteries in low temperatures based on Adaptive Transfer Enformer framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1