The state-of-the-art therapeutic paradigms against sepsis

Q1 Engineering Smart Materials in Medicine Pub Date : 2024-09-01 DOI:10.1016/j.smaim.2024.08.005
Ishita Saha , Neelanjana Bag , Shubham Roy , Zia Ullah , Souravi Bardhan , Parimal Karmakar , Sukhen Das , Bing Guo
{"title":"The state-of-the-art therapeutic paradigms against sepsis","authors":"Ishita Saha ,&nbsp;Neelanjana Bag ,&nbsp;Shubham Roy ,&nbsp;Zia Ullah ,&nbsp;Souravi Bardhan ,&nbsp;Parimal Karmakar ,&nbsp;Sukhen Das ,&nbsp;Bing Guo","doi":"10.1016/j.smaim.2024.08.005","DOIUrl":null,"url":null,"abstract":"<div><p>Sepsis frequently leads to life-threatening organ failure due to an in appropriate response by the body to bacterial, viral, and fungal infections. In recent years, there has been an increasing interest in using nanoparticles to develop biomarkers and drug delivery systems that have significantly improved the treatment of infectious diseases. Herein, we update the most recent development of nanoparticle-based therapeutics for sepsis treatment. This article begins with a brief overview of how sepsis is triggered and its associated diseases. It also explores the differences between traditional and modern treatment approaches. Afterward, the reasons for embracing nanotechnology-based therapies for sepsis are summarized, including their ability to reduce inflammation, provide antioxidant effects, regulate cell signaling pathways, manage reactive oxygen and nitrogen species (RONS) production, control autophagy and apoptosis, clear lipopolysaccharides (LPS) from the blood, inhibits the formation of cell-free DNA and cytokine storms. Furthermore, the special emphasis is on updating the use of nanotechnology-mediated drug delivery systems, such as nanoparticles, liposomes, and exosomes, in the treatment of sepsis caused by various microorganisms. Moreover, we also discuss polymer mediated therapy and some dynamic therapeutic aspects in septecemia disease. In addition, the article highlights the challenges and a limitation associated with using drug delivery for sepsis treatment and expresses the hope that this review will accelerate the development of more effective sepsis therapies and facilitate the transition from research to practical clinical application.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 3","pages":"Pages 425-446"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000371/pdfft?md5=73faa1af54ec459660fbf2846d7da408&pid=1-s2.0-S2590183424000371-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183424000371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Sepsis frequently leads to life-threatening organ failure due to an in appropriate response by the body to bacterial, viral, and fungal infections. In recent years, there has been an increasing interest in using nanoparticles to develop biomarkers and drug delivery systems that have significantly improved the treatment of infectious diseases. Herein, we update the most recent development of nanoparticle-based therapeutics for sepsis treatment. This article begins with a brief overview of how sepsis is triggered and its associated diseases. It also explores the differences between traditional and modern treatment approaches. Afterward, the reasons for embracing nanotechnology-based therapies for sepsis are summarized, including their ability to reduce inflammation, provide antioxidant effects, regulate cell signaling pathways, manage reactive oxygen and nitrogen species (RONS) production, control autophagy and apoptosis, clear lipopolysaccharides (LPS) from the blood, inhibits the formation of cell-free DNA and cytokine storms. Furthermore, the special emphasis is on updating the use of nanotechnology-mediated drug delivery systems, such as nanoparticles, liposomes, and exosomes, in the treatment of sepsis caused by various microorganisms. Moreover, we also discuss polymer mediated therapy and some dynamic therapeutic aspects in septecemia disease. In addition, the article highlights the challenges and a limitation associated with using drug delivery for sepsis treatment and expresses the hope that this review will accelerate the development of more effective sepsis therapies and facilitate the transition from research to practical clinical application.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最先进的败血症治疗范例
由于机体对细菌、病毒和真菌感染的反应不当,败血症经常导致危及生命的器官衰竭。近年来,人们对使用纳米粒子开发生物标记物和给药系统的兴趣与日俱增,这极大地改善了感染性疾病的治疗。在此,我们将介绍基于纳米粒子的败血症治疗方法的最新进展。本文首先简要概述了败血症的诱发原因及其相关疾病。文章还探讨了传统治疗方法与现代治疗方法之间的差异。随后,总结了采用基于纳米技术的败血症疗法的原因,包括它们能够减轻炎症、提供抗氧化效果、调节细胞信号通路、管理活性氧和氮物种(RONS)的产生、控制自噬和细胞凋亡、清除血液中的脂多糖(LPS)、抑制游离 DNA 的形成和细胞因子风暴。此外,我们还特别强调了纳米技术介导的给药系统(如纳米颗粒、脂质体和外泌体)在治疗由各种微生物引起的败血症方面的最新应用。此外,我们还讨论了聚合物介导疗法以及败血症的一些动态治疗方面。此外,文章还强调了利用药物递送治疗败血症所面临的挑战和局限性,并希望这篇综述能加快开发更有效的败血症疗法,促进从研究到实际临床应用的过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Materials in Medicine
Smart Materials in Medicine Engineering-Biomedical Engineering
CiteScore
14.00
自引率
0.00%
发文量
41
审稿时长
48 days
期刊最新文献
Current situation and challenges of polyhydroxyalkanoates-derived nanocarriers for cancer therapy Nanobody-as versatile tool emerging in autoimmune diseases Bioactive MXene hydrogel promotes structural and functional regeneration of skeletal muscle through improving autophagy and muscle innervation Progress of smart material in the repair of intervertebral disc degeneration Programming-via-spinning: Electrospun shape memory polymer fibers with simultaneous fabrication and programming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1