Evaluating seasonal variability of hydrogeochemistry, qualitative and corrosion-scaling effects of groundwater in southern region of NCT of Delhi, India
{"title":"Evaluating seasonal variability of hydrogeochemistry, qualitative and corrosion-scaling effects of groundwater in southern region of NCT of Delhi, India","authors":"Deepanshi Tanwar, Shipra Tyagi, Kiranmay Sarma","doi":"10.1016/j.gsd.2024.101331","DOIUrl":null,"url":null,"abstract":"<div><p>Groundwater is the most relied source of freshwater in the unplanned areas of southern region of NCT of Delhi. The present study envisions to evaluate the seasonal variability of the hydrogeochemical and qualitative nature of the groundwater, where its suitability was further checked through groundwater quality index (GWQI) and water stability indices for corrosion-scaling effects. About 12 physiochemical parameters were analysed with a total number of 102 samples in pre-monsoon (PRM) and post-monsoon (POM) seasons. Spatially, higher ranges of the quality parameters viz., EC, TDS, HCO<sub>3</sub><sup>−</sup>, Cl<sup>−</sup>, NO<sub>3</sub><sup>−</sup>, F<sup>−</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup> were observed in both the seasons particularly in north, northeastern, and southeastern parts and has nearest dumping or industrial units such as printing, trade and textile effluent, food, and fruit processing industry etc. The hydrogeochemical characteristics of the groundwater showed that regulating processes is predominant by carbonate weathering process followed by silicate weathering under alluvial plains of the study area. Strong correlations and positive loadings (>0.8) among EC, TDS, HCO<sub>3</sub><sup>−</sup>, Cl<sup>−</sup>, Na<sup>+</sup>, and moderate loadings of F<sup>−</sup>, potassium (K<sup>+</sup>) and Mg<sup>2+</sup> were attributed to mixed pollution factors released from geogenic and anthropogenic inputs. GWQI based classification showed that more than 50% of the sampling sites showed poor to unsuitable groundwater quality at sites like Malviya Nagar, Okhla, Jasola, Shaheen Bagh, Badarpur and Greater Kailash for potability. The entire area is prone to groundwater contamination, particularly northeastern, and southeastern region, falls under Yamuna flood and alluvial plains with shallower groundwater table. Water stability indices (LSI, RSI, PSI, LS, and AI) based corrosion-scaling effects have revealed that groundwater samples in PRM showed low to insignificant scaling and corrosive potential compared to POM season. Therefore, the findings of the study highlight the key areas that needs to formulate the strategies to sustain the quality of groundwater within the region.</p></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"27 ","pages":"Article 101331"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352801X24002546/pdfft?md5=0d761d502ac5cb3c9b78a32b54df4ab9&pid=1-s2.0-S2352801X24002546-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X24002546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Groundwater is the most relied source of freshwater in the unplanned areas of southern region of NCT of Delhi. The present study envisions to evaluate the seasonal variability of the hydrogeochemical and qualitative nature of the groundwater, where its suitability was further checked through groundwater quality index (GWQI) and water stability indices for corrosion-scaling effects. About 12 physiochemical parameters were analysed with a total number of 102 samples in pre-monsoon (PRM) and post-monsoon (POM) seasons. Spatially, higher ranges of the quality parameters viz., EC, TDS, HCO3−, Cl−, NO3−, F−, Ca2+, and Mg2+ were observed in both the seasons particularly in north, northeastern, and southeastern parts and has nearest dumping or industrial units such as printing, trade and textile effluent, food, and fruit processing industry etc. The hydrogeochemical characteristics of the groundwater showed that regulating processes is predominant by carbonate weathering process followed by silicate weathering under alluvial plains of the study area. Strong correlations and positive loadings (>0.8) among EC, TDS, HCO3−, Cl−, Na+, and moderate loadings of F−, potassium (K+) and Mg2+ were attributed to mixed pollution factors released from geogenic and anthropogenic inputs. GWQI based classification showed that more than 50% of the sampling sites showed poor to unsuitable groundwater quality at sites like Malviya Nagar, Okhla, Jasola, Shaheen Bagh, Badarpur and Greater Kailash for potability. The entire area is prone to groundwater contamination, particularly northeastern, and southeastern region, falls under Yamuna flood and alluvial plains with shallower groundwater table. Water stability indices (LSI, RSI, PSI, LS, and AI) based corrosion-scaling effects have revealed that groundwater samples in PRM showed low to insignificant scaling and corrosive potential compared to POM season. Therefore, the findings of the study highlight the key areas that needs to formulate the strategies to sustain the quality of groundwater within the region.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.