{"title":"Numerical investigation of ammonia-propane cofiring characteristics utilizing air and hydrogen peroxide as oxidizers","authors":"Ariyan Zare Ghadi , Hankwon Lim","doi":"10.1016/j.joei.2024.101817","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, we have investigated the impact of introducing different amounts of hydrogen peroxide into the air on the co-combustion behavior of propane and ammonia. Various combustion criteria including flame speed, ignition delay, heat release, NO emission, and reaction pathways have been explored within different compositions of propane/ammonia/air/hydrogen peroxide. This investigation has been performed through the kinetic study applying a detailed mechanism compromising 188 species and 1604 reactions. According to the findings, air replacement by hydrogen peroxide might improve the laminar burning velocity, heat release rate, flame temperature. The substantial reactivity of hydrogen peroxide leads to a significant increase in OH and H radicals, consequently accelerating the reaction rates as the hydrogen peroxide content in the oxidizer increases. The reaction H + O<sub>2</sub>↔O + OH (R906) plays the most significant role in enhancing flame propagation in a fuel/air mixture. However, as the hydrogen peroxide content in the mixture increases, the influence of this reaction diminishes, and the reaction H<sub>2</sub>O<sub>2</sub>(+M)↔2OH(+M) (R929) becomes more dominant. Initially, NO levels increase with the addition of hydrogen peroxide, but they start to decline at higher proportions of hydrogen peroxide. The initial increase may be attributed to the higher flame temperature, while the subsequent decrease could be linked to a substantial reduction in atmospheric nitrogen levels in the oxidizer. In situations where, pure hydrogen peroxide is used as the oxidizer, there is no production of NO<sub>x</sub> in pure propane combustion due to the lack of nitrogen. When compared to pure ammonia combustion, cofiring results in approximately half the amount of NO<sub>x</sub> emissions.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101817"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124002952","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, we have investigated the impact of introducing different amounts of hydrogen peroxide into the air on the co-combustion behavior of propane and ammonia. Various combustion criteria including flame speed, ignition delay, heat release, NO emission, and reaction pathways have been explored within different compositions of propane/ammonia/air/hydrogen peroxide. This investigation has been performed through the kinetic study applying a detailed mechanism compromising 188 species and 1604 reactions. According to the findings, air replacement by hydrogen peroxide might improve the laminar burning velocity, heat release rate, flame temperature. The substantial reactivity of hydrogen peroxide leads to a significant increase in OH and H radicals, consequently accelerating the reaction rates as the hydrogen peroxide content in the oxidizer increases. The reaction H + O2↔O + OH (R906) plays the most significant role in enhancing flame propagation in a fuel/air mixture. However, as the hydrogen peroxide content in the mixture increases, the influence of this reaction diminishes, and the reaction H2O2(+M)↔2OH(+M) (R929) becomes more dominant. Initially, NO levels increase with the addition of hydrogen peroxide, but they start to decline at higher proportions of hydrogen peroxide. The initial increase may be attributed to the higher flame temperature, while the subsequent decrease could be linked to a substantial reduction in atmospheric nitrogen levels in the oxidizer. In situations where, pure hydrogen peroxide is used as the oxidizer, there is no production of NOx in pure propane combustion due to the lack of nitrogen. When compared to pure ammonia combustion, cofiring results in approximately half the amount of NOx emissions.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.