Driving noncollinear interlayer exchange coupling intrinsically in magnetic trilayers

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2024-09-04 DOI:10.1016/j.mtphys.2024.101544
Guan-Wei Peng , Hung-Chin Wang , Yu-Jie Zhong , Chao-Cheng Kaun , Ching-Hao Chang
{"title":"Driving noncollinear interlayer exchange coupling intrinsically in magnetic trilayers","authors":"Guan-Wei Peng ,&nbsp;Hung-Chin Wang ,&nbsp;Yu-Jie Zhong ,&nbsp;Chao-Cheng Kaun ,&nbsp;Ching-Hao Chang","doi":"10.1016/j.mtphys.2024.101544","DOIUrl":null,"url":null,"abstract":"<div><p>Ferromagnetic side layers sandwiching a nonmagnetic spacer as a metallic trilayer has become a pivotal platform for achieving spintronic devices. Recent experiments demonstrate that manipulating the width or the nature of conducting spacer induces noncollinear magnetic alignment between the side layers. Our theoretical analysis reveals that altering the width of spacer significantly affects the interlayer exchange coupling (IEC), resulting in noncollinear alignment. Through analytic and first-principles methods, our study on the Fe/Ag/Fe trilayer shows that at a specific width of the Ag spacer, the magnetic moments of side layers tend to be perpendicular. This alignment is mediated by Ag quantum well states, exhibiting spin spirals across the trilayer. Our results reveal that the noncollinear IEC offers a degree of freedom to control magnetic devices and boot spintronic technology with improved transport capabilities.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101544"},"PeriodicalIF":10.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002207","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferromagnetic side layers sandwiching a nonmagnetic spacer as a metallic trilayer has become a pivotal platform for achieving spintronic devices. Recent experiments demonstrate that manipulating the width or the nature of conducting spacer induces noncollinear magnetic alignment between the side layers. Our theoretical analysis reveals that altering the width of spacer significantly affects the interlayer exchange coupling (IEC), resulting in noncollinear alignment. Through analytic and first-principles methods, our study on the Fe/Ag/Fe trilayer shows that at a specific width of the Ag spacer, the magnetic moments of side layers tend to be perpendicular. This alignment is mediated by Ag quantum well states, exhibiting spin spirals across the trilayer. Our results reveal that the noncollinear IEC offers a degree of freedom to control magnetic devices and boot spintronic technology with improved transport capabilities.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在磁性三层膜中内在驱动非共轭层间交换耦合
铁磁侧层夹着非磁性间隔层作为金属三层已成为实现自旋电子器件的关键平台。最近的实验证明,操纵导电间隔层的宽度或性质会诱发侧层之间的非共线磁排列。我们的理论分析表明,改变间隔层的宽度会显著影响层间交换耦合(IEC),从而导致非线性排列。通过分析和第一原理方法,我们对铁/银/铁三层的研究表明,在特定宽度的银间隔层上,侧层的磁矩趋于垂直。这种排列是由银量子阱态介导的,在三层上呈现出自旋螺旋。我们的研究结果表明,非共轭 IEC 为控制磁性器件和启动具有更强传输能力的自旋电子技术提供了自由度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
Ultra-soft, foldable, wearable piezoelectric sensor based on the aligned BaTiO3 nanoparticles Mist CVD Technology for Gallium Oxide Deposition: A Review Atomic Imprint Crystallization: Externally-Templated Crystallization of Amorphous Silicon Achieving ultra-high resistivity and outstanding piezoelectric properties by co-substitution in CaBi2Nb2O9 ceramics Data-driven design of thermal-mechanical multifunctional metamaterials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1