Asim Mahmood , Khalid Aljohani , Bassam S. Aljohani , Areej Bukhari , Zain Ul Abedin
{"title":"Electrifying solutions: MOFs and multi-metal nanomaterials for sustainable methanol electro-oxidation and CO2 reduction","authors":"Asim Mahmood , Khalid Aljohani , Bassam S. Aljohani , Areej Bukhari , Zain Ul Abedin","doi":"10.1016/j.mtsust.2024.100966","DOIUrl":null,"url":null,"abstract":"<div><p>The global energy crisis and the urgent need to mitigate carbon emissions have spurred intensive research into sustainable energy sources and efficient catalytic systems. This review integrates recent advancements in two key areas: electrocatalytic methanol oxidation and CO<sub>2</sub> reduction to methanol, leveraging metal-organic frameworks (MOFs) and multi-metal nanomaterials. Despite methanol's effectiveness as an energy source, its electro-oxidation requires highly active electrocatalysts. Recent studies have highlighted the superior performance of MOF-based materials, especially when combined with multiple metals, in enhancing the electrocatalytic oxidation of methanol. Downsizing components further boosts MOF activity, while the addition of carbon-containing supports like graphene oxide (GO) and reduced graphene oxide (rGO) improves catalytic capabilities through increased surface area and enhanced dispersion of active materials. Similarly, the electrocatalytic reduction of CO<sub>2</sub> to methanol using MOFs has gained traction due to their simplicity, large surface area, and unique structural properties. This review addresses the challenges of selective and efficient CO<sub>2</sub> electroreduction, proposing avenues to enhance MOF-based electrocatalysts for methanol production. Strategies include the development of novel MOFs with improved conductivity, chemical durability, and catalytic efficiency. Furthermore, exploration of multi-metal nanomaterials, including tri and tetra-metals, holds promise for advancing electrodes tailored for electrochemical methanol oxidation. By synergistically leveraging MOFs and multi-metal nanomaterials, this review underscores their pivotal roles in addressing energy scarcity and climate change while advancing the field of electrocatalysis towards sustainable methanol oxidation.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 100966"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589234724003026/pdfft?md5=39a47df8ac944d13067107253e260995&pid=1-s2.0-S2589234724003026-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003026","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The global energy crisis and the urgent need to mitigate carbon emissions have spurred intensive research into sustainable energy sources and efficient catalytic systems. This review integrates recent advancements in two key areas: electrocatalytic methanol oxidation and CO2 reduction to methanol, leveraging metal-organic frameworks (MOFs) and multi-metal nanomaterials. Despite methanol's effectiveness as an energy source, its electro-oxidation requires highly active electrocatalysts. Recent studies have highlighted the superior performance of MOF-based materials, especially when combined with multiple metals, in enhancing the electrocatalytic oxidation of methanol. Downsizing components further boosts MOF activity, while the addition of carbon-containing supports like graphene oxide (GO) and reduced graphene oxide (rGO) improves catalytic capabilities through increased surface area and enhanced dispersion of active materials. Similarly, the electrocatalytic reduction of CO2 to methanol using MOFs has gained traction due to their simplicity, large surface area, and unique structural properties. This review addresses the challenges of selective and efficient CO2 electroreduction, proposing avenues to enhance MOF-based electrocatalysts for methanol production. Strategies include the development of novel MOFs with improved conductivity, chemical durability, and catalytic efficiency. Furthermore, exploration of multi-metal nanomaterials, including tri and tetra-metals, holds promise for advancing electrodes tailored for electrochemical methanol oxidation. By synergistically leveraging MOFs and multi-metal nanomaterials, this review underscores their pivotal roles in addressing energy scarcity and climate change while advancing the field of electrocatalysis towards sustainable methanol oxidation.
期刊介绍:
Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science.
With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.