首页 > 最新文献

Materials Today Sustainability最新文献

英文 中文
Zinc oxide and its engineered derivative nanomaterials: Insight into energy, environmental, medical, agricultural, and food applications 氧化锌及其工程衍生物纳米材料:能源、环境、医疗、农业和食品应用透视
IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-11-19 DOI: 10.1016/j.mtsust.2024.101051
Gemechu Fikadu Aaga
Zinc oxide and zinc oxide-based nanomaterials are among the top materials in the fields of nanomaterials applications. On the other hand, the current global challenge of providing sustainable energy, a safe environment, well-improved medication, and sustainable agriculture, especially for developing countries, and safe food is becoming increasingly difficult for governments and scientists. In this review, the potential applications of ZnO and ZnO-based nanomaterials in the energy, environmental, medical, agricultural, and food fields were explored. These nanomaterials have been reported to be important materials for energy storage, conversion, harvesting, and efficient solar cell material, while their efficiency and stability can be triggered by doping or compositing them with another material. Their application in pollutant elimination as a photocatalyst, electrocatalyst, and adsorbent has been reported to be promising, while the material regeneration and reuse in this field still need intensive investigation. The various study findings indicated that they are highly applicable in medicine as a drug, drug targeting materials, catalysts in drug synthesis, and efficient antimicrobials. ZnO and its derivative nanomaterials have also been explored and found to be potential fertilizers in agriculture, especially as a source of Zn, while also improving the effective use of other fertilizers through the slow-release technique. In addition, the different study findings showed that they can be used as food packaging materials and also extend the shelf life of food. The results of this study indicate that ZnO and its engineered derivative nanomaterials are promising materials for future renewable energy, safe environments, improved medication, agriculture, and food industries.
氧化锌和基于氧化锌的纳米材料是纳米材料应用领域的顶级材料之一。另一方面,提供可持续能源、安全环境、良好的药物、可持续农业(尤其是发展中国家)和安全食品等当前的全球性挑战对各国政府和科学家来说正变得越来越困难。本综述探讨了氧化锌和氧化锌基纳米材料在能源、环境、医疗、农业和食品领域的潜在应用。据报道,这些纳米材料是能源储存、转换、收集的重要材料,也是高效太阳能电池的材料。据报道,它们作为光催化剂、电催化剂和吸附剂在消除污染物方面的应用前景广阔,但该领域的材料再生和再利用仍需深入研究。各种研究结果表明,它们作为药物、药物靶向材料、药物合成催化剂和高效抗菌剂,在医药领域具有很高的应用价值。对氧化锌及其衍生物纳米材料的研究还发现,它们是潜在的农业肥料,尤其是作为锌的来源,同时还能通过缓释技术提高其他肥料的有效利用率。此外,不同的研究结果表明,它们还可用作食品包装材料,延长食品的保质期。这项研究结果表明,氧化锌及其工程衍生物纳米材料是未来可再生能源、安全环境、改良药物、农业和食品工业中大有可为的材料。
{"title":"Zinc oxide and its engineered derivative nanomaterials: Insight into energy, environmental, medical, agricultural, and food applications","authors":"Gemechu Fikadu Aaga","doi":"10.1016/j.mtsust.2024.101051","DOIUrl":"10.1016/j.mtsust.2024.101051","url":null,"abstract":"<div><div>Zinc oxide and zinc oxide-based nanomaterials are among the top materials in the fields of nanomaterials applications. On the other hand, the current global challenge of providing sustainable energy, a safe environment, well-improved medication, and sustainable agriculture, especially for developing countries, and safe food is becoming increasingly difficult for governments and scientists. In this review, the potential applications of ZnO and ZnO-based nanomaterials in the energy, environmental, medical, agricultural, and food fields were explored. These nanomaterials have been reported to be important materials for energy storage, conversion, harvesting, and efficient solar cell material, while their efficiency and stability can be triggered by doping or compositing them with another material. Their application in pollutant elimination as a photocatalyst, electrocatalyst, and adsorbent has been reported to be promising, while the material regeneration and reuse in this field still need intensive investigation. The various study findings indicated that they are highly applicable in medicine as a drug, drug targeting materials, catalysts in drug synthesis, and efficient antimicrobials. ZnO and its derivative nanomaterials have also been explored and found to be potential fertilizers in agriculture, especially as a source of Zn, while also improving the effective use of other fertilizers through the slow-release technique. In addition, the different study findings showed that they can be used as food packaging materials and also extend the shelf life of food. The results of this study indicate that ZnO and its engineered derivative nanomaterials are promising materials for future renewable energy, safe environments, improved medication, agriculture, and food industries.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 101051"},"PeriodicalIF":7.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142703045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to ‘Optimization of transition metal sulfide through sputtered transition metal nitride thin film for hybrid supercapacitors’ [25, 100680] 通过溅射过渡金属氮化物薄膜优化用于混合超级电容器的过渡金属硫化物 "的更正 [25, 100680]
IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-11-19 DOI: 10.1016/j.mtsust.2024.101046
Muhammad Zahir Iqbal , Asma Khizar , Misbah Shaheen , Rashid Ali , Zubair Ahmad , Saikh Mohammad Wabaidur
{"title":"Corrigendum to ‘Optimization of transition metal sulfide through sputtered transition metal nitride thin film for hybrid supercapacitors’ [25, 100680]","authors":"Muhammad Zahir Iqbal ,&nbsp;Asma Khizar ,&nbsp;Misbah Shaheen ,&nbsp;Rashid Ali ,&nbsp;Zubair Ahmad ,&nbsp;Saikh Mohammad Wabaidur","doi":"10.1016/j.mtsust.2024.101046","DOIUrl":"10.1016/j.mtsust.2024.101046","url":null,"abstract":"","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 101046"},"PeriodicalIF":7.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142703042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent insights on Z-scheme and S-scheme photocatalysts for nitrogen conversion to ammonia: A review 关于氮转化为氨的 Z 型和 S 型光催化剂的最新见解:综述
IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-11-17 DOI: 10.1016/j.mtsust.2024.101043
Khadijeh Pournemati, Aziz Habibi-Yangjeh
One of the main research hot spots of the present century is the design and development of technologies for producing ammonia with minimal environmental impacts and energy-efficient procedures. Recently, the utilization of heterogeneous photocatalysts for nitrogen fixation has attracted the booming opinion of researchers, as it is a practical, environmentally friendly, and sustainable approach for ammonia synthesis. Integrating two or more semiconductors and developing heterojunctions with Z/S-scheme mechanism is a suitable solution for promoting the photocatalytic nitrogen fixation efficiency. The Z/S-scheme photocatalysts could effectually improve the segregation of charges, retain the reducing/oxidizing power of electrons/holes, and significantly boost harvesting of the solar energy. Therefore, the overall objective of this review is to provide an overview of recent research papers on Z/S-scheme photocatalytic systems and to establish a strong foundation to ensure successful progress in the promising field of nitrogen fixation research. Hence, the detailed reaction mechanism with Z/S-scheme systems, charge kinetics, and reaction pathways are highlighted. Moreover, the structural/electronic features, synthesis routes, and photocatalytic performance in the nitrogen fixation are summarized. The challenges in the arena and perspectives on the future progress of photocatalytic nitrogen fixation are introduced too. This review provide an extensive and inspiring picture for the rationally designing impressive Z/S-scheme photocatalysts for production of ammonia in large scale.
本世纪的主要研究热点之一是设计和开发对环境影响最小、高效节能的合成氨生产技术。最近,利用异质光催化剂固氮吸引了研究人员的热切关注,因为这是一种实用、环保和可持续的氨合成方法。将两种或两种以上的半导体整合在一起,开发出具有 Z/Scheme 机制的异质结,是提高光催化固氮效率的合适方案。Z/Scheme 光催化剂可有效改善电荷分离,保留电子/空穴的还原/氧化能力,并显著提高太阳能的收集能力。因此,本综述的总体目标是概述近期有关 Z/S 型光催化系统的研究论文,并为确保在前景广阔的固氮研究领域取得成功奠定坚实的基础。因此,本文重点介绍了 Z/S 型光催化体系的详细反应机理、电荷动力学和反应途径。此外,还总结了固氮过程中的结构/电子特征、合成路线和光催化性能。此外,还介绍了光催化固氮领域所面临的挑战以及对未来进展的展望。这篇综述为合理设计令人印象深刻的 Z/S 型光催化剂用于大规模生产氨提供了广阔的启发。
{"title":"Recent insights on Z-scheme and S-scheme photocatalysts for nitrogen conversion to ammonia: A review","authors":"Khadijeh Pournemati,&nbsp;Aziz Habibi-Yangjeh","doi":"10.1016/j.mtsust.2024.101043","DOIUrl":"10.1016/j.mtsust.2024.101043","url":null,"abstract":"<div><div>One of the main research hot spots of the present century is the design and development of technologies for producing ammonia with minimal environmental impacts and energy-efficient procedures. Recently, the utilization of heterogeneous photocatalysts for nitrogen fixation has attracted the booming opinion of researchers, as it is a practical, environmentally friendly, and sustainable approach for ammonia synthesis. Integrating two or more semiconductors and developing heterojunctions with Z/S-scheme mechanism is a suitable solution for promoting the photocatalytic nitrogen fixation efficiency. The Z/S-scheme photocatalysts could effectually improve the segregation of charges, retain the reducing/oxidizing power of electrons/holes, and significantly boost harvesting of the solar energy. Therefore, the overall objective of this review is to provide an overview of recent research papers on Z/S-scheme photocatalytic systems and to establish a strong foundation to ensure successful progress in the promising field of nitrogen fixation research. Hence, the detailed reaction mechanism with Z/S-scheme systems, charge kinetics, and reaction pathways are highlighted. Moreover, the structural/electronic features, synthesis routes, and photocatalytic performance in the nitrogen fixation are summarized. The challenges in the arena and perspectives on the future progress of photocatalytic nitrogen fixation are introduced too. This review provide an extensive and inspiring picture for the rationally designing impressive Z/S-scheme photocatalysts for production of ammonia in large scale.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 101043"},"PeriodicalIF":7.1,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142703043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on corrosion resistance and microstructure of modified sediment geopolymer materials 改性沉积土工聚合物材料的耐腐蚀性和微观结构研究
IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-11-15 DOI: 10.1016/j.mtsust.2024.101048
Changming Li , Huilin Liu , Xiaoxiong Chai , Dongyang Jia , Yaozong Wang , Hui Liu , Xudong Yang , Guanfeng Liu , Wanjiao Li
Utilizing sediment to manufacture geopolymer materials by alkali-activated modification is an eco-friendly and economical strategy. Investigating its corrosion resistance properties is crucial for enhancing the durability and structural stability of the materials and is the key to promoting their widespread application. In this paper, the combined effects of modifiers, mineral admixtures, and corrosion conditions on the corrosion resistance, mechanical strength, and microstructure of modified sediment geopolymer materials were thoroughly investigated. The mechanical properties of materials were evaluated by universal press, and the mineral composition and microstructure of the materials were analyzed by XRD, SEM and TG. The results reveal that the strength of the modified sediment material are significantly improved. The highest compressive strength of the modified sediment samples reached 15.84 MPa, which was much higher than that of the modified sediment samples without additives. The optimum softening coefficient of the sample is 0.79, and its water resistance is exceptional. The highest compressive strength reaches 15.04 MPa and 14.43 MPa respectively in acid and alkali environment, and its corrosion resistance is better than that of sediment materials without additives. The microstructure analyzed clearly indicated that the C–S–H gels, as the main hydration products, effectively promoted the close bonding of the sediment particles and filled the pores and microcracks inside the specimens, which significantly enhanced the strength and corrosion resistance of the material.
利用沉积物通过碱活化改性来制造土工聚合物材料是一种既环保又经济的策略。研究其耐腐蚀性能对于提高材料的耐久性和结构稳定性至关重要,也是促进其广泛应用的关键。本文深入研究了改性剂、矿物掺合料和腐蚀条件对改性沉积土工聚合物材料的耐腐蚀性、机械强度和微观结构的综合影响。采用万能压机对材料的力学性能进行了评价,并通过 XRD、SEM 和 TG 分析了材料的矿物成分和微观结构。结果表明,改性沉积物材料的强度明显提高。改性沉积物样品的最高抗压强度达到 15.84 兆帕,远高于未添加添加剂的改性沉积物样品。样品的最佳软化系数为 0.79,耐水性能优异。在酸碱环境中的最高抗压强度分别达到 15.04 兆帕和 14.43 兆帕,其耐腐蚀性能优于不含添加剂的沉积物材料。微观结构分析表明,C-S-H 凝胶作为主要的水化产物,有效地促进了沉积物颗粒的紧密结合,填充了试样内部的孔隙和微裂缝,显著提高了材料的强度和耐腐蚀性能。
{"title":"Study on corrosion resistance and microstructure of modified sediment geopolymer materials","authors":"Changming Li ,&nbsp;Huilin Liu ,&nbsp;Xiaoxiong Chai ,&nbsp;Dongyang Jia ,&nbsp;Yaozong Wang ,&nbsp;Hui Liu ,&nbsp;Xudong Yang ,&nbsp;Guanfeng Liu ,&nbsp;Wanjiao Li","doi":"10.1016/j.mtsust.2024.101048","DOIUrl":"10.1016/j.mtsust.2024.101048","url":null,"abstract":"<div><div>Utilizing sediment to manufacture geopolymer materials by alkali-activated modification is an eco-friendly and economical strategy. Investigating its corrosion resistance properties is crucial for enhancing the durability and structural stability of the materials and is the key to promoting their widespread application. In this paper, the combined effects of modifiers, mineral admixtures, and corrosion conditions on the corrosion resistance, mechanical strength, and microstructure of modified sediment geopolymer materials were thoroughly investigated. The mechanical properties of materials were evaluated by universal press, and the mineral composition and microstructure of the materials were analyzed by XRD, SEM and TG. The results reveal that the strength of the modified sediment material are significantly improved. The highest compressive strength of the modified sediment samples reached 15.84 MPa, which was much higher than that of the modified sediment samples without additives. The optimum softening coefficient of the sample is 0.79, and its water resistance is exceptional. The highest compressive strength reaches 15.04 MPa and 14.43 MPa respectively in acid and alkali environment, and its corrosion resistance is better than that of sediment materials without additives. The microstructure analyzed clearly indicated that the C–S–H gels, as the main hydration products, effectively promoted the close bonding of the sediment particles and filled the pores and microcracks inside the specimens, which significantly enhanced the strength and corrosion resistance of the material.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"29 ","pages":"Article 101048"},"PeriodicalIF":7.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cu-Bi2S3 nanorods promote reactive oxygen species production for photodynamic therapy of prostate cancer 铜-Bi2S3 纳米棒促进活性氧生成,用于前列腺癌的光动力疗法
IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-11-14 DOI: 10.1016/j.mtsust.2024.101047
Jiacheng Ling , Rongrong Gu , Junchao Wu , Hualong Li , Yuanxi Lin , Yang Hou , Xiaoyi Huang , Ruixi Chu , Tao Xu , Sheng Ye , Song Fan
Photodynamic therapy (PDT) has emerged as a promising cancer treatment approach due to its non-invasive and specifically targeted nature. However, the effectiveness of PDT is hindered by the complex synthesis of conventional photosensitizers and inadequate reactive oxygen species (ROS) generation. Here, we synthesize a copper-doped Bi2S3 (Cu-Bi2S3) nanorod to investigate its PDT potential against PCa. Compared with bulk Bi2S3 (58%), Cu-Bi2S3 nanorod caused 87% of PC3 cells to die under light. The dispersed Cu in the Bi2S3 bulk phase effectively inhibits the recombination of photogenerated electron-hole pairs, ultimately providing a high concentration of charge carriers. DFT calculations show that Cu doping causes the d-band center of Cu-Bi2S3, promoting the adsorption and activation of O2 on Cu-Bi2S3 to enhance ROS generation. This work offers a viable solution to the pressing scientific challenge of ROS generation, a key aspect of enhancing the efficacy of PDT for cancer treatment.
光动力疗法(PDT)因其无创伤和针对性强的特点,已成为一种前景广阔的癌症治疗方法。然而,传统光敏剂的复杂合成和活性氧(ROS)生成不足阻碍了光动力疗法的有效性。在这里,我们合成了一种掺铜的 Bi2S3(Cu-Bi2S3)纳米棒,以研究它对 PCa 的局部放疗潜力。与块状 Bi2S3(58%)相比,Cu-Bi2S3 纳米棒能使 87% 的 PC3 细胞在光照下死亡。Bi2S3体相中分散的铜有效抑制了光生电子-空穴对的重组,最终提供了高浓度的电荷载流子。DFT 计算表明,Cu 掺杂会导致 Cu-Bi2S3 的 d 带中心,促进 O2 在 Cu-Bi2S3 上的吸附和活化,从而增强 ROS 的生成。这项工作为 ROS 生成这一紧迫的科学挑战提供了可行的解决方案,而 ROS 生成是提高光导放疗(PDT)治疗癌症疗效的一个关键方面。
{"title":"Cu-Bi2S3 nanorods promote reactive oxygen species production for photodynamic therapy of prostate cancer","authors":"Jiacheng Ling ,&nbsp;Rongrong Gu ,&nbsp;Junchao Wu ,&nbsp;Hualong Li ,&nbsp;Yuanxi Lin ,&nbsp;Yang Hou ,&nbsp;Xiaoyi Huang ,&nbsp;Ruixi Chu ,&nbsp;Tao Xu ,&nbsp;Sheng Ye ,&nbsp;Song Fan","doi":"10.1016/j.mtsust.2024.101047","DOIUrl":"10.1016/j.mtsust.2024.101047","url":null,"abstract":"<div><div>Photodynamic therapy (PDT) has emerged as a promising cancer treatment approach due to its non-invasive and specifically targeted nature. However, the effectiveness of PDT is hindered by the complex synthesis of conventional photosensitizers and inadequate reactive oxygen species (ROS) generation. Here, we synthesize a copper-doped Bi<sub>2</sub>S<sub>3</sub> (Cu-Bi<sub>2</sub>S<sub>3</sub>) nanorod to investigate its PDT potential against PCa. Compared with bulk Bi<sub>2</sub>S<sub>3</sub> (58%), Cu-Bi<sub>2</sub>S<sub>3</sub> nanorod caused 87% of PC3 cells to die under light. The dispersed Cu in the Bi<sub>2</sub>S<sub>3</sub> bulk phase effectively inhibits the recombination of photogenerated electron-hole pairs, ultimately providing a high concentration of charge carriers. DFT calculations show that Cu doping causes the d-band center of Cu-Bi<sub>2</sub>S<sub>3</sub>, promoting the adsorption and activation of O<sub>2</sub> on Cu-Bi<sub>2</sub>S<sub>3</sub> to enhance ROS generation. This work offers a viable solution to the pressing scientific challenge of ROS generation, a key aspect of enhancing the efficacy of PDT for cancer treatment.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 101047"},"PeriodicalIF":7.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The interfacial charge change enhanced by Pr0.6Sm0.4Co0·8Mn0·2O3 activated peroxymonosulfate was used for the efficient degradation of tetracycline under the nanoscale domain limiting and distance effect 在纳米尺度畴限制和距离效应下,Pr0.6Sm0.4Co0-8Mn0-2O3活化过硫酸盐增强的界面电荷变化被用于高效降解四环素
IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-11-12 DOI: 10.1016/j.mtsust.2024.101044
Xiayan Zhang , Zhi Song , Boxia Liu , Bofei Liu , Jialu Liu , Jinrong Lu , Cheng Li , Yeqiong Huang , Dongxu Han , Jingjing Yang , Hua Liu
In this work, an improved sol-gel method was used to prepare a series of Co-infused PrSmMnO3 perovskites (Pr0.6Sm0.4Co1-XMnXO3, PSCM) to rapidly activate peroxymonosulfate (PMS) for efficient degradation of tetracycline (TC). The experimental results showed that the degradation efficiency of the PSCM-82/PMS system for TC in the pH 2–11 range was close to 100%. The nanoscale domain-limiting and distance effect of PSCM under different activators were discussed, and the catalytic mechanism of the non-radical electron transfer pathway in the PSCM-82/PMS system was proposed. After the optimization of the DFT calculation, it can be seen that the dCo-Mn-Co range of the PSCM-82 material is 9.8–9.9 Å. The molecular size of PMS is 9.9 Å, which precisely matches the dCo-Mn-Co range of the material. Moreover, the distance between molecular sizes was relatively minimal, and the interface charge transfer was enhanced by both the confinement and distance effects. This promotes a fast catalytic reaction and an optimal degradation rate. During this process, PMS molecules were adsorbed by the active metal sites on the surface of PSCM-82, resulting in a large amount of interfacial charge transfer. This allows a strong coupling between the PMS and the catalyst, resulting in a reaction surface with high redox potential. According to the results of density functional theory (DFT) calculation, quenching experiment, electron paramagnetic resonance (EPR) experiment and electrochemical research, it can be concluded that the main degradation pathway of TC is realized through the direct electron transfer process.
本研究采用改进的溶胶-凝胶法制备了一系列共注入型 PrSmMnO3 包晶石(Pr0.6Sm0.4Co1-XMnXO3,PSCM),用于快速激活过一硫酸盐(PMS)以高效降解四环素(TC)。实验结果表明,在 pH 值为 2-11 的范围内,PSCM-82/PMS 系统对四环素的降解效率接近 100%。讨论了不同活化剂作用下PSCM的纳米尺度限域效应和距离效应,提出了PSCM-82/PMS体系非自由基电子传递途径的催化机理。经过 DFT 计算优化后可知,PSCM-82 材料的 dCo-Mn-Co 范围为 9.8-9.9 Å,而 PMS 的分子尺寸为 9.9 Å,正好与该材料的 dCo-Mn-Co 范围相匹配。此外,分子尺寸之间的距离相对较小,在约束效应和距离效应的双重作用下,界面电荷转移得到了增强。这促进了快速催化反应和最佳降解率。在此过程中,PMS 分子被 PSCM-82 表面的活性金属位点吸附,从而产生大量的界面电荷转移。这使得 PMS 与催化剂之间产生了强烈的耦合,从而形成了具有高氧化还原电位的反应表面。根据密度泛函理论(DFT)计算、淬火实验、电子顺磁共振(EPR)实验和电化学研究的结果,可以得出 TC 的主要降解途径是通过直接电子转移过程实现的。
{"title":"The interfacial charge change enhanced by Pr0.6Sm0.4Co0·8Mn0·2O3 activated peroxymonosulfate was used for the efficient degradation of tetracycline under the nanoscale domain limiting and distance effect","authors":"Xiayan Zhang ,&nbsp;Zhi Song ,&nbsp;Boxia Liu ,&nbsp;Bofei Liu ,&nbsp;Jialu Liu ,&nbsp;Jinrong Lu ,&nbsp;Cheng Li ,&nbsp;Yeqiong Huang ,&nbsp;Dongxu Han ,&nbsp;Jingjing Yang ,&nbsp;Hua Liu","doi":"10.1016/j.mtsust.2024.101044","DOIUrl":"10.1016/j.mtsust.2024.101044","url":null,"abstract":"<div><div>In this work, an improved sol-gel method was used to prepare a series of Co-infused PrSmMnO<sub>3</sub> perovskites (Pr<sub>0.6</sub>Sm<sub>0.4</sub>Co<sub>1-X</sub>Mn<sub>X</sub>O<sub>3</sub>, PSCM) to rapidly activate peroxymonosulfate (PMS) for efficient degradation of tetracycline (TC). The experimental results showed that the degradation efficiency of the PSCM-82/PMS system for TC in the pH 2–11 range was close to 100%. The nanoscale domain-limiting and distance effect of PSCM under different activators were discussed, and the catalytic mechanism of the non-radical electron transfer pathway in the PSCM-82/PMS system was proposed. After the optimization of the DFT calculation, it can be seen that the <em>d</em><sub>Co-Mn-Co</sub> range of the PSCM-82 material is 9.8–9.9 Å. The molecular size of PMS is 9.9 Å, which precisely matches the <em>d</em><sub>Co-Mn-Co</sub> range of the material. Moreover, the distance between molecular sizes was relatively minimal, and the interface charge transfer was enhanced by both the confinement and distance effects. This promotes a fast catalytic reaction and an optimal degradation rate. During this process, PMS molecules were adsorbed by the active metal sites on the surface of PSCM-82, resulting in a large amount of interfacial charge transfer. This allows a strong coupling between the PMS and the catalyst, resulting in a reaction surface with high redox potential. According to the results of density functional theory (DFT) calculation, quenching experiment, electron paramagnetic resonance (EPR) experiment and electrochemical research, it can be concluded that the main degradation pathway of TC is realized through the direct electron transfer process.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 101044"},"PeriodicalIF":7.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transition metal atoms embedded graphyne as effective catalysts for nitrate electroreduction to ammonia: A theoretical study 嵌入石墨烯的过渡金属原子是硝酸盐电还原成氨的有效催化剂:理论研究
IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-11-12 DOI: 10.1016/j.mtsust.2024.101045
Donghui Zhang, Jingwei Liu, Jingxiang Zhao
Electrocatalytic nitrate reduction reaction (NO3RR) to ammonia has been proved to be a viable approach to dispose of nitrates pollution and simultaneously fabricate valuable ammonia at room temperature and pressure. It is essential to explore high-performance and selective electrocatalysts for NO3RR to overcome the sluggish kinetics. Herein, through adopting a four-step screening route based upon the calculation of density functional theory (DFT), we have performed a comprehensive investigation on the NO3RR catalytic activities for single-atom catalysts (SACs), taking transition metal atom embedded graphyne (TM-GY, TM = 3d ∼ 5d) as example. The computation results show that the electrochemical conversion of nitrate-to-ammonia can be realized on Cr-GY candidate with an extremely low limiting potential (−0.36 V) and high selectivity, which can be ascribed to the moderate adsorption strength between the intermediate species and Cr atom derived from its distinct electronic property. Our study not only reveals the NO3RR catalytic origin of TM-GY, but also provides a new route for the rational design of electrocatalysts for nitrate reduction to ammonia.
事实证明,电催化硝酸盐还原反应(NO3RR)生成氨气是一种可行的方法,既能处理硝酸盐污染,又能在常温常压下生成有价值的氨气。为克服NO3RR反应缓慢的动力学特性,探索高性能、高选择性的电催化剂至关重要。在此,我们以过渡金属原子嵌入石墨烯(TM-GY,TM = 3d ∼ 5d)为例,采用基于密度泛函理论(DFT)计算的四步筛选路线,对单原子催化剂(SACs)的 NO3RR 催化活性进行了全面研究。计算结果表明,在 Cr-GY 候选体上可以实现硝酸到氨气的电化学转化,且具有极低的极限电位(-0.36 V)和高选择性,这可归因于中间物种与 Cr 原子之间的适度吸附强度,而这种吸附强度来自于其独特的电子特性。我们的研究不仅揭示了 TM-GY 的 NO3RR 催化起源,还为合理设计硝酸盐还原成氨的电催化剂提供了一条新途径。
{"title":"Transition metal atoms embedded graphyne as effective catalysts for nitrate electroreduction to ammonia: A theoretical study","authors":"Donghui Zhang,&nbsp;Jingwei Liu,&nbsp;Jingxiang Zhao","doi":"10.1016/j.mtsust.2024.101045","DOIUrl":"10.1016/j.mtsust.2024.101045","url":null,"abstract":"<div><div>Electrocatalytic nitrate reduction reaction (NO<sub>3</sub>RR) to ammonia has been proved to be a viable approach to dispose of nitrates pollution and simultaneously fabricate valuable ammonia at room temperature and pressure. It is essential to explore high-performance and selective electrocatalysts for NO<sub>3</sub>RR to overcome the sluggish kinetics. Herein, through adopting a four-step screening route based upon the calculation of density functional theory (DFT), we have performed a comprehensive investigation on the NO<sub>3</sub>RR catalytic activities for single-atom catalysts (SACs), taking transition metal atom embedded graphyne (TM-GY, TM = 3d ∼ 5d) as example. The computation results show that the electrochemical conversion of nitrate-to-ammonia can be realized on Cr-GY candidate with an extremely low limiting potential (−0.36 V) and high selectivity, which can be ascribed to the moderate adsorption strength between the intermediate species and Cr atom derived from its distinct electronic property. Our study not only reveals the NO<sub>3</sub>RR catalytic origin of TM-GY, but also provides a new route for the rational design of electrocatalysts for nitrate reduction to ammonia.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 101045"},"PeriodicalIF":7.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of biobased poly(ether-ester) from potentially bioproduced betulin and p-coumaric acid 利用潜在生物生产的白桦脂素和对香豆酸合成生物基聚醚酯
IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-11-07 DOI: 10.1016/j.mtsust.2024.101039
Théo Guérin, Eric Pollet, Luc Avérous
For a more sustainable future, innovative polymer materials synthesized from biobased molecules are currently a key trend, in the frame of the bioeconomy. In this study, new renewable macromolecular architectures poly(ether-esters) has been synthesized from betulin and para-coumaric acid, two plant-based building blocks, poorly valorized till now, and potentially bioproduced by white biotechnologies. To date, these are the first synthesized polymers with such a reported architecture. In a first step, different chemical modifications were carried out on these biomolecules to increase their reactivities. Betulin hydroxyl groups were esterified with aliphatic acids of carbon chain lengths C6, C8 and C10 terminated by a bromine, with good yields (79–85%). P-coumaric acid was dimerized by [2 + 2] cycloaddition, and then esterified with ethanol, butanol or isobutanol with excellent yields (92–96%). These modified building blocks were finally copolymerized by Williamson polyetherification reaction, leading to various analogous materials with molar masses ranging from 9700 to 15500 g mol−1. Different thermal characterizations have been then performed. TGA results show that these poly(ether-esters) displayed high thermal stabilities (up to 336 °C). Besides, DSC analyses revealed Tg ranging from 38 to 81 °C, depending on the length of the aliphatic carbon chain and the nature of the pendant ester groups for a large range of potential applications.
为了实现更加可持续的未来,在生物经济的框架下,利用生物基分子合成创新聚合物材料是当前的主要趋势。在这项研究中,我们从白桦脂素和对位香豆酸合成了新型可再生高分子结构聚(醚-酯),这两种以植物为基础的结构单元迄今为止价值不高,但有可能通过白色生物技术进行生物生产。迄今为止,这是首批报道的具有这种结构的合成聚合物。首先,对这些生物分子进行了不同的化学修饰,以提高它们的反应活性。白桦脂羟基与碳链长度为 C6、C8 和 C10 且以溴为末端的脂肪族酸发生酯化反应,收率很高(79-85%)。对香豆酸通过[2 + 2]环加成进行二聚,然后与乙醇、丁醇或异丁醇进行酯化,收率极高(92-96%)。这些经过修饰的结构单元最后通过威廉姆森聚醚化反应进行共聚,从而得到摩尔质量从 9700 克摩尔-1 到 15500 克摩尔-1 不等的各种类似材料。随后进行了不同的热学表征。热重分析结果表明,这些聚醚酯具有很高的热稳定性(高达 336 ℃)。此外,DSC 分析表明,根据脂肪族碳链的长度和挂酯基团的性质,Tg 的范围为 38 ℃ 至 81 ℃,具有广泛的应用潜力。
{"title":"Synthesis of biobased poly(ether-ester) from potentially bioproduced betulin and p-coumaric acid","authors":"Théo Guérin,&nbsp;Eric Pollet,&nbsp;Luc Avérous","doi":"10.1016/j.mtsust.2024.101039","DOIUrl":"10.1016/j.mtsust.2024.101039","url":null,"abstract":"<div><div>For a more sustainable future, innovative polymer materials synthesized from biobased molecules are currently a key trend, in the frame of the bioeconomy. In this study, new renewable macromolecular architectures poly(ether-esters) has been synthesized from betulin and <em>para</em>-coumaric acid, two plant-based building blocks, poorly valorized till now, and potentially bioproduced by white biotechnologies. To date, these are the first synthesized polymers with such a reported architecture. In a first step, different chemical modifications were carried out on these biomolecules to increase their reactivities. Betulin hydroxyl groups were esterified with aliphatic acids of carbon chain lengths C6, C8 and C10 terminated by a bromine, with good yields (79–85%). <em>P</em>-coumaric acid was dimerized by [2 + 2] cycloaddition, and then esterified with ethanol, butanol or isobutanol with excellent yields (92–96%). These modified building blocks were finally copolymerized by Williamson polyetherification reaction, leading to various analogous materials with molar masses ranging from 9700 to 15500 g mol<sup>−1</sup>. Different thermal characterizations have been then performed. TGA results show that these poly(ether-esters) displayed high thermal stabilities (up to 336 °C). Besides, DSC analyses revealed T<sub>g</sub> ranging from 38 to 81 °C, depending on the length of the aliphatic carbon chain and the nature of the pendant ester groups for a large range of potential applications.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"29 ","pages":"Article 101039"},"PeriodicalIF":7.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in transition metal-based photocatalytic heterojunctions for algal inhibition and water disinfection: A review 用于抑制藻类和水消毒的过渡金属基光催化异质结的最新进展:综述
IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-11-07 DOI: 10.1016/j.mtsust.2024.101041
Yaksha Verma , Gaurav Sharma , Jibran Iqbal , Mu. Naushad , Chin Wei Lai , Amit Kumar , Pooja Dhiman , Ackmez Mudhoo
Sustainable energy production and effective water pollution control are critical global priorities. Harmful algal blooms (HABs) and waterborne pathogens pose significant threats to water quality and public health, necessitating efficient and eco-friendly treatment methods. Transition metal-based photocatalytic heterojunctions offer promising solutions by leveraging the unique properties of transition metals to enhance photocatalytic efficiency. This review examines recent advances in these heterojunctions employed for algal inhibition and water disinfection, discussing various heterojunction type (including conventional, p-n, Z-scheme, S-scheme, and Schottky heterojunctions), and their synthesis methods. We elucidate the mechanisms involved, highlighting improved electron transfer, reduced recombination rates, and broadened light absorption. Recent studies on their effectiveness in inhibiting harmful algae and disinfecting water are also reviewed. Current challenges and future research directions to optimize these materials are identified. This is a first comprehensive overview focusing on the contributions of transition metals in photocatalytic heterojunctions for water treatment, aiming to support the development of sustainable technologies.
可持续能源生产和有效的水污染控制是至关重要的全球优先事项。有害藻华(HAB)和水传播病原体对水质和公众健康构成重大威胁,因此需要高效、环保的处理方法。基于过渡金属的光催化异质结利用过渡金属的独特性质提高光催化效率,提供了前景广阔的解决方案。本综述探讨了这些用于抑制藻类和水消毒的异质结的最新进展,讨论了各种异质结类型(包括传统型、p-n 型、Z 型、S 型和肖特基型异质结)及其合成方法。我们阐明了其中的机理,重点介绍了改进电子传递、降低重组率和拓宽光吸收等方面。此外,我们还回顾了最近关于它们在抑制有害藻类和水消毒方面有效性的研究。还指出了优化这些材料的当前挑战和未来研究方向。这是首次全面综述过渡金属在水处理光催化异质结中的贡献,旨在支持可持续技术的发展。
{"title":"Recent advances in transition metal-based photocatalytic heterojunctions for algal inhibition and water disinfection: A review","authors":"Yaksha Verma ,&nbsp;Gaurav Sharma ,&nbsp;Jibran Iqbal ,&nbsp;Mu. Naushad ,&nbsp;Chin Wei Lai ,&nbsp;Amit Kumar ,&nbsp;Pooja Dhiman ,&nbsp;Ackmez Mudhoo","doi":"10.1016/j.mtsust.2024.101041","DOIUrl":"10.1016/j.mtsust.2024.101041","url":null,"abstract":"<div><div>Sustainable energy production and effective water pollution control are critical global priorities. Harmful algal blooms (HABs) and waterborne pathogens pose significant threats to water quality and public health, necessitating efficient and eco-friendly treatment methods. Transition metal-based photocatalytic heterojunctions offer promising solutions by leveraging the unique properties of transition metals to enhance photocatalytic efficiency. This review examines recent advances in these heterojunctions employed for algal inhibition and water disinfection, discussing various heterojunction type (including conventional, p-n, Z-scheme, <em>S</em>-scheme, and Schottky heterojunctions), and their synthesis methods. We elucidate the mechanisms involved, highlighting improved electron transfer, reduced recombination rates, and broadened light absorption. Recent studies on their effectiveness in inhibiting harmful algae and disinfecting water are also reviewed. Current challenges and future research directions to optimize these materials are identified. This is a first comprehensive overview focusing on the contributions of transition metals in photocatalytic heterojunctions for water treatment, aiming to support the development of sustainable technologies.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 101041"},"PeriodicalIF":7.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective growth of Nb–Fe–B intermetallic compounds for the direct separation of rare earths based on manipulating liquation 基于操纵液化的 Nb-Fe-B 金属间化合物的选择性生长,用于稀土的直接分离
IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-11-06 DOI: 10.1016/j.mtsust.2024.101042
Sangmin Park , Jaeyun Jeong , Seunghun Cha , Yoonhyung Keum , Ju-Young Cho , Hyungbeen Park , Taek-Soo Kim , Dae-Kyeom Kim , Myungsuk Song
Since the primary goal of industrialization has changed to carbon neutrality, the importance of rare earths (REs) has increased due to their criticality in green industries. The attainment of sustainable resources via green production processes is necessary due to the increasing need for REs. Liquid metal extraction is regarded as a leading technology for supporting the sustainability of resources based on the selective reactivity between REs and extractants. However, this process requires multiple stages, including pretreatment, extraction and separation, which are considered bottlenecks in industrialization. In this work, reverse selectivity is applied instead of conventional liquid metal extraction (c-LME) for the direct separation of REs in a single stage. Niobium (Nb) is selected because of its thermodynamic properties for enhancing the selectivity of the reactions between the extractant and other elements, excluding REs. The process is thermodynamically designed for liquation systems, and it reflects the interactions between the extractant and magnets. The solidification behavior based on the selective growth of phases without REs is shown with variations in the composition and cooling rate to confirm the kinetics. The composition prevents the formation of RE-Fe intermetallic compounds, and excess Nb is considered a bottleneck for separating REs. In addition, the cooling rate influences the agglomeration of RE as a layer. Because of the manipulation of the liquation, 92.89% of the REs are successfully separated in the form of accumulated layers. This effective process for the direct separation of REs is verified through thermodynamic and experimental assessments. Overall, this investigation can provide new guidelines for the construction of a circular economy after improving the energy efficiency of this system in future research.
由于工业化的主要目标已转变为碳中和,稀土(REs)在绿色工业中的重要性也随之增加。由于对稀土的需求不断增加,通过绿色生产工艺实现可持续资源是必要的。基于稀土和萃取剂之间的选择性反应,液态金属萃取被认为是支持资源可持续性的领先技术。然而,这一过程需要多个阶段,包括预处理、萃取和分离,这被认为是工业化的瓶颈。在这项工作中,采用反向选择性代替传统的液态金属萃取(c-LME),在一个阶段内直接分离出 REs。之所以选择铌(Nb),是因为铌的热力学特性可以提高萃取剂与其他元素(不包括 REs)之间反应的选择性。该工艺的热力学设计适用于液化系统,它反映了萃取剂与磁体之间的相互作用。基于不含 RE 的相的选择性生长的凝固行为,随着成分和冷却速率的变化而变化,从而证实了动力学。成分会阻止 RE-Fe 金属间化合物的形成,而过量的 Nb 被认为是分离 REs 的瓶颈。此外,冷却速度也会影响作为层的 RE 的团聚。通过对液化过程的控制,92.89% 的可再 生金属以积聚层的形式被成功分离。通过热力学和实验评估,验证了这种直接分离 RE 的有效工艺。总之,这项研究可以在未来的研究中提高该系统的能效,为循环经济的建设提供新的指导。
{"title":"Selective growth of Nb–Fe–B intermetallic compounds for the direct separation of rare earths based on manipulating liquation","authors":"Sangmin Park ,&nbsp;Jaeyun Jeong ,&nbsp;Seunghun Cha ,&nbsp;Yoonhyung Keum ,&nbsp;Ju-Young Cho ,&nbsp;Hyungbeen Park ,&nbsp;Taek-Soo Kim ,&nbsp;Dae-Kyeom Kim ,&nbsp;Myungsuk Song","doi":"10.1016/j.mtsust.2024.101042","DOIUrl":"10.1016/j.mtsust.2024.101042","url":null,"abstract":"<div><div>Since the primary goal of industrialization has changed to carbon neutrality, the importance of rare earths (REs) has increased due to their criticality in green industries. The attainment of sustainable resources via green production processes is necessary due to the increasing need for REs. Liquid metal extraction is regarded as a leading technology for supporting the sustainability of resources based on the selective reactivity between REs and extractants. However, this process requires multiple stages, including pretreatment, extraction and separation, which are considered bottlenecks in industrialization. In this work, reverse selectivity is applied instead of conventional liquid metal extraction (c-LME) for the direct separation of REs in a single stage. Niobium (Nb) is selected because of its thermodynamic properties for enhancing the selectivity of the reactions between the extractant and other elements, excluding REs. The process is thermodynamically designed for liquation systems, and it reflects the interactions between the extractant and magnets. The solidification behavior based on the selective growth of phases without REs is shown with variations in the composition and cooling rate to confirm the kinetics. The composition prevents the formation of RE-Fe intermetallic compounds, and excess Nb is considered a bottleneck for separating REs. In addition, the cooling rate influences the agglomeration of RE as a layer. Because of the manipulation of the liquation, 92.89% of the REs are successfully separated in the form of accumulated layers. This effective process for the direct separation of REs is verified through thermodynamic and experimental assessments. Overall, this investigation can provide new guidelines for the construction of a circular economy after improving the energy efficiency of this system in future research.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 101042"},"PeriodicalIF":7.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142703040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materials Today Sustainability
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1