A comparative study on MHz and GHz bursts addressing the polarization-based control of laser-induced modifications in fused silica

IF 5 2区 物理与天体物理 Q1 OPTICS Optics and Laser Technology Pub Date : 2024-09-10 DOI:10.1016/j.optlastec.2024.111289
Miglė Mackevičiūtė, Juozas Dudutis, Paulius Gečys
{"title":"A comparative study on MHz and GHz bursts addressing the polarization-based control of laser-induced modifications in fused silica","authors":"Miglė Mackevičiūtė,&nbsp;Juozas Dudutis,&nbsp;Paulius Gečys","doi":"10.1016/j.optlastec.2024.111289","DOIUrl":null,"url":null,"abstract":"<div><p>Self-filamentation of laser beams is widely used in glass scribing. However, the scribing speed is usually limited due to a small transverse damage zone of the modifications. Therefore, the processing time could be improved by forming controllable cracks. In this paper, we demonstrate a polarization-based control of cracks formed using burst regime. To the best of our knowledge, this is the first time a volumetric laser-induced crack control by polarization is reported inside fused silica. This research also includes a comparative study of MHz and GHz burst regimes on modification lengths and positions. The GHz burst is shown to be more advantageous over the MHz regime, as it allows forming more uniform modifications with longer cracks. However, both MHz and GHz bursts are eligible for controllable crack formation. At the polarization-controlled regime modification longitudinal lengths reached up to 1 mm and transverse lengths up to 32 μm. These results indicate that filamentation scribing using bursts has the potential to increase the scribing speeds up to tens of meters per second.</p></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111289"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224007473","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Self-filamentation of laser beams is widely used in glass scribing. However, the scribing speed is usually limited due to a small transverse damage zone of the modifications. Therefore, the processing time could be improved by forming controllable cracks. In this paper, we demonstrate a polarization-based control of cracks formed using burst regime. To the best of our knowledge, this is the first time a volumetric laser-induced crack control by polarization is reported inside fused silica. This research also includes a comparative study of MHz and GHz burst regimes on modification lengths and positions. The GHz burst is shown to be more advantageous over the MHz regime, as it allows forming more uniform modifications with longer cracks. However, both MHz and GHz bursts are eligible for controllable crack formation. At the polarization-controlled regime modification longitudinal lengths reached up to 1 mm and transverse lengths up to 32 μm. These results indicate that filamentation scribing using bursts has the potential to increase the scribing speeds up to tens of meters per second.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对基于偏振的熔融石英激光诱导改性控制的 MHz 和 GHz 脉冲串比较研究
激光束的自纤化被广泛应用于玻璃划片。然而,由于修改的横向损伤区域较小,划线速度通常会受到限制。因此,可以通过形成可控裂纹来缩短加工时间。在本文中,我们展示了一种基于偏振的裂纹控制方法。据我们所知,这是首次报道在熔融石英内部通过偏振进行体积激光诱导裂纹控制。这项研究还包括对 MHz 和 GHz 爆裂机制在修改长度和位置方面的比较研究。结果表明,吉赫猝发比兆赫机制更有优势,因为它可以形成更均匀的改性和更长的裂纹。不过,MHz 和 GHz 脉冲串均可用于可控裂纹形成。在极化控制机制下,改性的纵向长度可达 1 毫米,横向长度可达 32 微米。这些结果表明,使用脉冲串进行丝状划线有可能将划线速度提高到每秒数十米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.50
自引率
10.00%
发文量
1060
审稿时长
3.4 months
期刊介绍: Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication. The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas: •development in all types of lasers •developments in optoelectronic devices and photonics •developments in new photonics and optical concepts •developments in conventional optics, optical instruments and components •techniques of optical metrology, including interferometry and optical fibre sensors •LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow •applications of lasers to materials processing, optical NDT display (including holography) and optical communication •research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume) •developments in optical computing and optical information processing •developments in new optical materials •developments in new optical characterization methods and techniques •developments in quantum optics •developments in light assisted micro and nanofabrication methods and techniques •developments in nanophotonics and biophotonics •developments in imaging processing and systems
期刊最新文献
Enhanced THz specific glucose sensing in human serum based on high-frequency resonance in functionalized all-dielectric metamaterial Make both ends meet: A synergistic optimization infrared small target detection with streamlined computational overhead Multi-pass compression in the air of sub-millijoule femtosecond fiber laser pulses for high harmonic generation Editorial Board Transient dynamics of multi-soliton states in a spatiotemporal mode-locked fiber laser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1