An all-optical approach for the precise quantification of residual stress in the shot-peened structures based on laser-induced Rayleigh waves

IF 4.6 2区 物理与天体物理 Q1 OPTICS Optics and Laser Technology Pub Date : 2024-09-10 DOI:10.1016/j.optlastec.2024.111756
{"title":"An all-optical approach for the precise quantification of residual stress in the shot-peened structures based on laser-induced Rayleigh waves","authors":"","doi":"10.1016/j.optlastec.2024.111756","DOIUrl":null,"url":null,"abstract":"<div><p>An all-optical method for precisely measuring of residual stress in the submillimeter depth of shot-peened structures is proposed, based on laser-induced Rayleigh waves. First, a finite element analysis is conducted to elucidate the correlation between Rayleigh wave velocity and surface roughness. The velocity of Rayleigh waves in a stress-relieved, shot-peened specimen is then established as a baseline, effectively eliminating the influence of microstructural alterations such as grain refinement and work hardening on the Rayleigh wave velocity. By numerically simulating velocity variations across different stress levels, the acoustoelastic constant of Rayleigh waves in TB6 titanium alloy is accurately determined. Additionally, the optimized frequency of Rayleigh waves is identified, enabling the precise measurement of average residual stress within the shot-peening depth. In this study, the complex interaction between surface roughness and microstructural changes on Rayleigh wave velocity is rigorously controlled through meticulous experimental design, ensuring accurate residual stress measurements using an all-optical approach. The average residual stress, quantified using laser-induced Rayleigh waves under varying shot-peening intensities, aligns closely with results from X-ray diffraction and blind hole drilling methods, demonstrating the high efficacy and reliability of the proposed methodology.</p></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012143","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

An all-optical method for precisely measuring of residual stress in the submillimeter depth of shot-peened structures is proposed, based on laser-induced Rayleigh waves. First, a finite element analysis is conducted to elucidate the correlation between Rayleigh wave velocity and surface roughness. The velocity of Rayleigh waves in a stress-relieved, shot-peened specimen is then established as a baseline, effectively eliminating the influence of microstructural alterations such as grain refinement and work hardening on the Rayleigh wave velocity. By numerically simulating velocity variations across different stress levels, the acoustoelastic constant of Rayleigh waves in TB6 titanium alloy is accurately determined. Additionally, the optimized frequency of Rayleigh waves is identified, enabling the precise measurement of average residual stress within the shot-peening depth. In this study, the complex interaction between surface roughness and microstructural changes on Rayleigh wave velocity is rigorously controlled through meticulous experimental design, ensuring accurate residual stress measurements using an all-optical approach. The average residual stress, quantified using laser-induced Rayleigh waves under varying shot-peening intensities, aligns closely with results from X-ray diffraction and blind hole drilling methods, demonstrating the high efficacy and reliability of the proposed methodology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于激光诱导瑞利波的全光学方法,用于精确量化喷丸强化结构中的残余应力
本文提出了一种基于激光诱导瑞利波的全光学方法,用于精确测量喷丸强化结构亚毫米深度的残余应力。首先,进行了有限元分析,以阐明瑞利波速度与表面粗糙度之间的相关性。然后将应力释放、喷丸强化试样中的瑞利波速度确定为基线,有效消除了晶粒细化和加工硬化等微结构变化对瑞利波速度的影响。通过数值模拟不同应力水平下的速度变化,准确确定了 TB6 钛合金中瑞利波的声弹性常数。此外,还确定了瑞利波的优化频率,从而能够精确测量喷丸深度内的平均残余应力。在这项研究中,通过缜密的实验设计,严格控制了表面粗糙度和微观结构变化对瑞利波速度的复杂交互作用,确保使用全光学方法精确测量残余应力。在不同的喷丸强度下,利用激光诱导瑞利波量化的平均残余应力与 X 射线衍射和盲孔钻探方法的结果非常吻合,证明了所提出方法的高效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.50
自引率
10.00%
发文量
1060
审稿时长
3.4 months
期刊介绍: Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication. The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas: •development in all types of lasers •developments in optoelectronic devices and photonics •developments in new photonics and optical concepts •developments in conventional optics, optical instruments and components •techniques of optical metrology, including interferometry and optical fibre sensors •LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow •applications of lasers to materials processing, optical NDT display (including holography) and optical communication •research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume) •developments in optical computing and optical information processing •developments in new optical materials •developments in new optical characterization methods and techniques •developments in quantum optics •developments in light assisted micro and nanofabrication methods and techniques •developments in nanophotonics and biophotonics •developments in imaging processing and systems
期刊最新文献
Control of photothermal liquid jets through microbubble Regulation: Fundamental mechanisms and Developing Strategies Multi-parameter reconstruction of interference harmonics by effective tuning combination selection and sampling boundary fitting Semantic ghost imaging based on semantic coding Enhanced beam quality of high-energy lasers utilizing fused silica as an all-solid-state SBS-PCM Efficient high-power 1.9 µm picosecond Raman laser in H2-filled hollow-core fiber without generation of rotational lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1