A comparison of environmental impacts of three contrasting cropping systems for barley production under Mediterranean conditions

IF 4.5 1区 农林科学 Q1 AGRONOMY European Journal of Agronomy Pub Date : 2024-09-11 DOI:10.1016/j.eja.2024.127354
{"title":"A comparison of environmental impacts of three contrasting cropping systems for barley production under Mediterranean conditions","authors":"","doi":"10.1016/j.eja.2024.127354","DOIUrl":null,"url":null,"abstract":"<div><p>Agriculture is a key contributor to environmental degradation and to global change. Consequently, the design of sustainable agricultural systems and the assessment of their relevance is a major priority for European agriculture. Different cropping systems, with variable objectives and constraints, can be used in cereal production in Spain. This study focused in comparing three winter barley cropping systems, ranging from intensive no-till to organic approaches. To assess the environmental impacts of each system, a Life Cycle Assessment was conducted. The findings indicate that the impacts varied depending on the chosen functional unit. When land area was considered the functional unit, the lowest impacts were obtained in the organic system, while the no-till system showed the highest. This difference was primarily attributed to variations in N fertilization. Nitrogen use had a significant impact across various categories, primarily due to the energy demands for its production and transportation, as well as the emissions of NH<sub>3</sub> and N<sub>2</sub>O. However, when evaluating agricultural goods production as the functional unit, the organic system exhibited the highest impacts in terms of energy demand, freshwater ecotoxicity and freshwater eutrophication. These differences are explained by the loss of production in the fallow year and the low yields of the legume crop. The middle-way option provided the lowest impacts when economic net revenues were considered. The main reason for this was its higher total revenues associated to high crop production and EU subsidies.</p></div>","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1161030124002752/pdfft?md5=b0d3db501e76b768ef91a1df004fefe6&pid=1-s2.0-S1161030124002752-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1161030124002752","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Agriculture is a key contributor to environmental degradation and to global change. Consequently, the design of sustainable agricultural systems and the assessment of their relevance is a major priority for European agriculture. Different cropping systems, with variable objectives and constraints, can be used in cereal production in Spain. This study focused in comparing three winter barley cropping systems, ranging from intensive no-till to organic approaches. To assess the environmental impacts of each system, a Life Cycle Assessment was conducted. The findings indicate that the impacts varied depending on the chosen functional unit. When land area was considered the functional unit, the lowest impacts were obtained in the organic system, while the no-till system showed the highest. This difference was primarily attributed to variations in N fertilization. Nitrogen use had a significant impact across various categories, primarily due to the energy demands for its production and transportation, as well as the emissions of NH3 and N2O. However, when evaluating agricultural goods production as the functional unit, the organic system exhibited the highest impacts in terms of energy demand, freshwater ecotoxicity and freshwater eutrophication. These differences are explained by the loss of production in the fallow year and the low yields of the legume crop. The middle-way option provided the lowest impacts when economic net revenues were considered. The main reason for this was its higher total revenues associated to high crop production and EU subsidies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比较地中海条件下大麦生产的三种对比种植系统对环境的影响
农业是造成环境退化和全球变化的主要因素。因此,设计可持续农业系统并评估其相关性是欧洲农业的当务之急。在西班牙的谷物生产中,可以采用不同的种植系统,其目标和制约因素各不相同。本研究重点比较了三种冬季大麦耕作制度,从密集免耕到有机耕作。为了评估每种耕作制度对环境的影响,进行了生命周期评估。研究结果表明,所选的功能单元不同,对环境的影响也不同。当土地面积被视为功能单位时,有机系统的影响最小,而免耕系统的影响最大。这种差异主要归因于氮肥施用量的变化。氮的使用对各种类别都有重大影响,主要是由于其生产和运输的能源需求以及 NH3 和 N2O 的排放。然而,在将农产品生产作为功能单元进行评估时,有机系统在能源需求、淡水生态毒性和淡水富营养化方面的影响最大。造成这些差异的原因是休耕年的产量损失和豆科作物的低产量。在考虑经济净收入时,中间方案的影响最小。其主要原因是与高作物产量和欧盟补贴相关的总收入较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Agronomy
European Journal of Agronomy 农林科学-农艺学
CiteScore
8.30
自引率
7.70%
发文量
187
审稿时长
4.5 months
期刊介绍: The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics: crop physiology crop production and management including irrigation, fertilization and soil management agroclimatology and modelling plant-soil relationships crop quality and post-harvest physiology farming and cropping systems agroecosystems and the environment crop-weed interactions and management organic farming horticultural crops papers from the European Society for Agronomy bi-annual meetings In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.
期刊最新文献
Nitrogen reduction enhances crop productivity, decreases soil nitrogen loss and optimize its balance in wheat-maize cropping area of the Loess Plateau, China Optimal agronomic measures combined with biochar increased rice yield through enhancing nitrogen use efficiency in soda saline-alkali fields Coupling a dynamic epidemiological model into a process-based crop model to simulate climate change effects on soybean target spot disease in Brazil A custom pipeline for building computational models of plant tissue Estimating rice leaf area index at multiple growth stages with Sentinel-2 data: An evaluation of different retrieval algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1