A comparative DFT study on NO2 adsorption and sensing activities of pristine, reduced and Pr3+-doped CeO2 (110) surface

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Surface Science Pub Date : 2024-09-05 DOI:10.1016/j.susc.2024.122596
{"title":"A comparative DFT study on NO2 adsorption and sensing activities of pristine, reduced and Pr3+-doped CeO2 (110) surface","authors":"","doi":"10.1016/j.susc.2024.122596","DOIUrl":null,"url":null,"abstract":"<div><p>Surface site activation enhances the sensing properties of the CeO<sub>2</sub> (110) surface. Herein, the adsorption of nitrogen dioxide (NO<sub>2</sub>) on pristine and modified CeO<sub>2</sub> (110) surfaces has been studied in detail using quantum chemical calculation. The introduction of the single praseodymium atom on the CeO<sub>2</sub> surface reduces its band gap from 1.93 to 0.53 eV, which in turn enhances the adsorption energy from -0.58 (pristine) to -1.34 eV (doped) and also prolongs the desorption time, indicating stronger adsorption ability. The density of states (DOS) and projected density of states (PDOS) analyses reveal that Pr doping modifies the electronic properties of the CeO<sub>2</sub> (110) surface which improves NO<sub>2</sub> sensitivity. Further, it is also observed that 0.57 eV increase in the work function for NO₂ adsorption on Pr doped CeO<sub>2</sub> surface, indicating stronger interaction compared to the pristine CeO<sub>2</sub>. In contrast, reduced CeO<sub>2</sub> surfaces do not exhibit any significant change in sensing properties. Thus, it is understood that Pr-doped CeO<sub>2</sub> (Pr/CeO<sub>2</sub>) surfaces exhibit better stability and sensitivity towards NO<sub>2</sub> adsorption compared to pristine and reduced surfaces. Therefore, this study provides insight into the rational design of advanced gas sensing materials based on modified CeO<sub>2</sub> (110) surfaces, contributing to the development of an efficient air quality monitoring system.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S003960282400147X/pdfft?md5=da5d6fe58d0c46afcf6053356f53d89c&pid=1-s2.0-S003960282400147X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003960282400147X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Surface site activation enhances the sensing properties of the CeO2 (110) surface. Herein, the adsorption of nitrogen dioxide (NO2) on pristine and modified CeO2 (110) surfaces has been studied in detail using quantum chemical calculation. The introduction of the single praseodymium atom on the CeO2 surface reduces its band gap from 1.93 to 0.53 eV, which in turn enhances the adsorption energy from -0.58 (pristine) to -1.34 eV (doped) and also prolongs the desorption time, indicating stronger adsorption ability. The density of states (DOS) and projected density of states (PDOS) analyses reveal that Pr doping modifies the electronic properties of the CeO2 (110) surface which improves NO2 sensitivity. Further, it is also observed that 0.57 eV increase in the work function for NO₂ adsorption on Pr doped CeO2 surface, indicating stronger interaction compared to the pristine CeO2. In contrast, reduced CeO2 surfaces do not exhibit any significant change in sensing properties. Thus, it is understood that Pr-doped CeO2 (Pr/CeO2) surfaces exhibit better stability and sensitivity towards NO2 adsorption compared to pristine and reduced surfaces. Therefore, this study provides insight into the rational design of advanced gas sensing materials based on modified CeO2 (110) surfaces, contributing to the development of an efficient air quality monitoring system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原始、还原和掺杂 Pr3+ 的 CeO2 (110) 表面的二氧化氮吸附和传感活性的 DFT 比较研究
表面位点活化增强了 CeO2 (110) 表面的传感特性。本文利用量子化学计算详细研究了二氧化氮(NO2)在原始和修饰的 CeO2 (110) 表面上的吸附情况。在 CeO2 表面引入单个镨原子使其带隙从 1.93 eV 减小到 0.53 eV,从而使吸附能从-0.58(原始)提高到-1.34 eV(掺杂),并且延长了解吸时间,这表明吸附能力更强。状态密度(DOS)和投影状态密度(PDOS)分析表明,掺杂 Pr 改变了 CeO2 (110) 表面的电子特性,从而提高了对二氧化氮的敏感性。此外,还观察到掺杂 Pr 的 CeO2 表面吸附 NO₂ 的功函数增加了 0.57 eV,这表明与原始 CeO2 相比,它们之间的相互作用更强。相比之下,还原的 CeO2 表面在传感特性上没有任何明显变化。因此,与原始表面和还原表面相比,掺杂 Pr 的 CeO2(Pr/CeO2)表面对二氧化氮的吸附具有更好的稳定性和灵敏度。因此,本研究为基于改性 CeO2 (110) 表面的先进气体传感材料的合理设计提供了启示,有助于开发高效的空气质量监测系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surface Science
Surface Science 化学-物理:凝聚态物理
CiteScore
3.30
自引率
5.30%
发文量
137
审稿时长
25 days
期刊介绍: Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to: • model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions • nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena • reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization • phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization • surface reactivity for environmental protection and pollution remediation • interactions at surfaces of soft matter, including polymers and biomaterials. Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.
期刊最新文献
X-ray and photoelectron spectroscopy of surface chemistry; from bonding via femtosecond to operando Adsorption and sensing performances of transition metal doped ZnO monolayer for CO and NO: A DFT study Fabrication of B-C-N nanosheets on Rh(111) from benzene – borazine mixtures Growth and electronic structure of the nodal line semimetal in monolayer Cu2Si on Cu(111) Step-by-step silicon carbide graphitisation process study in terms of time and temperature parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1