Development of major process accident indicators based on Industrial Internet

IF 3.6 3区 工程技术 Q2 ENGINEERING, CHEMICAL Journal of Loss Prevention in The Process Industries Pub Date : 2024-09-07 DOI:10.1016/j.jlp.2024.105418
Zi-jian Ni , Xiao Wang , Zhi-cheng Zhang , Lei Wang
{"title":"Development of major process accident indicators based on Industrial Internet","authors":"Zi-jian Ni ,&nbsp;Xiao Wang ,&nbsp;Zhi-cheng Zhang ,&nbsp;Lei Wang","doi":"10.1016/j.jlp.2024.105418","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, Chinese-produced bulk chemical products have consistently ranked among the world’s leading suppliers. The scale of individual petrochemical plants and chemical parks has grown significantly, resulting in increased complexity that can contribute to higher levels of uncertainty surrounding potential losses. MA (major accident) indicators can provide a comprehensive assessment of a plant’s safety performance. This study focuses on three primary objectives: Firstly, utilizing process safety management software powered by Industrial Internet technology, we develop MA indicators. Secondly, applying the Systems-Theoretic Accident Model and Processes (STAMP) theory, this work analyzes the logical relationship between MA indicators and accidents. STAMP provides a more comprehensive understanding of indicators involving multiple barriers. Lastly, drawing upon a large language model, this paper retrospectively analyzes 212 accident reports to verify the connection between the index and actual accidents. It is noteworthy that the MA indicators adhere to SMART criteria for effective measurement.</p></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":"92 ","pages":"Article 105418"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423024001761","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, Chinese-produced bulk chemical products have consistently ranked among the world’s leading suppliers. The scale of individual petrochemical plants and chemical parks has grown significantly, resulting in increased complexity that can contribute to higher levels of uncertainty surrounding potential losses. MA (major accident) indicators can provide a comprehensive assessment of a plant’s safety performance. This study focuses on three primary objectives: Firstly, utilizing process safety management software powered by Industrial Internet technology, we develop MA indicators. Secondly, applying the Systems-Theoretic Accident Model and Processes (STAMP) theory, this work analyzes the logical relationship between MA indicators and accidents. STAMP provides a more comprehensive understanding of indicators involving multiple barriers. Lastly, drawing upon a large language model, this paper retrospectively analyzes 212 accident reports to verify the connection between the index and actual accidents. It is noteworthy that the MA indicators adhere to SMART criteria for effective measurement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于工业互联网的主要过程事故指标的开发
近年来,中国生产的大宗化工产品一直位居世界主要供应商之列。单个石化厂和化工园区的规模显著扩大,导致其复杂性增加,从而增加了潜在损失的不确定性。MA(重大事故)指标可以全面评估工厂的安全绩效。本研究侧重于三个主要目标:首先,利用工业互联网技术驱动的过程安全管理软件,我们开发了 MA 指标。其次,运用系统理论事故模型和过程(STAMP)理论,分析 MA 指标与事故之间的逻辑关系。STAMP 为涉及多重障碍的指标提供了更全面的理解。最后,本文借鉴大语言模型,对 212 份事故报告进行了回顾性分析,以验证指标与实际事故之间的联系。值得注意的是,MA 指标遵守了有效测量的 SMART 标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
14.30%
发文量
226
审稿时长
52 days
期刊介绍: The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.
期刊最新文献
Direct determination of turbulent burning velocity during aluminum flame propagation: A comparison of three experimental methods Risk assessment of domino effects under fire and explosion accidents in LNG storage tank farms based on Bayesian network Editorial Board Learning from incidents in petrochemical companies in Brazil Risk assessment of flammable liquid transportation on waterways: An ontology-driven dynamic Bayesian network approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1