Sashank Kasiraju , Yifan Wang , Saurabh Bhandari , Aayush R. Singh , Dionisios G. Vlachos
{"title":"A Python tool for parameter estimation of “black box” macro- and micro-kinetic models with Bayesian optimization – petBOA","authors":"Sashank Kasiraju , Yifan Wang , Saurabh Bhandari , Aayush R. Singh , Dionisios G. Vlachos","doi":"10.1016/j.cpc.2024.109358","DOIUrl":null,"url":null,"abstract":"<div><p>We develop an open-source Python-based Parameter Estimation Tool utilizing Bayesian Optimization (petBOA) with a unique wrapper interface for gradient-free parameter estimation of expensive black-box kinetic models. We provide examples for Python macrokinetic and microkinetic modeling (MKM) tools, such as Cantera and OpenMKM. petBOA leverages surrogate Gaussian processes to approximate and minimize the objective function designed for parameter estimation. Bayesian Optimization (BO) is implemented using the open-source BoTorch toolkit. petBOA employs local and global sensitivity analyses to identify important parameters optimized against experimental data, and leverages pMuTT for consistent kinetic and thermodynamic parameters while perturbing species binding energies within the typical error of conventional DFT exchange-correlation functionals (20-30 kJ/mol). The source code and documentation are hosted on GitHub.</p></div><div><h3>Program summary</h3><p><em>Program title</em>: petBOA</p><p><em>Developer's repository link</em>: <span><span>https://github.com/VlachosGroup/petBOA</span><svg><path></path></svg></span></p><p><em>Licensing provisions</em>: MIT license</p><p><em>Programming language</em>: Python</p><p><em>External routines</em>: NEXTorch, PyTorch, GPyTorch, BoTorch, Matplotlib, PyDOE2, NumPy, SciPy, pandas, pMuTT, SALib, docker.</p><p><em>Nature of the problem</em>: An open-source, gradient-free parameter estimation of black-box microkinetic modeling tools, such as OpenMKM is lacking.</p><p><em>Solution method</em>: petBOA is a Python-based tool that utilizes Bayesian Optimization and offers a unique wrapper interface for expensive black-box kinetic models. It leverages the pMuTT library for consistent kinetic and thermodynamic parameter estimation and employs both local and global sensitivity analyses to identify crucial parameters.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"306 ","pages":"Article 109358"},"PeriodicalIF":7.2000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524002819","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We develop an open-source Python-based Parameter Estimation Tool utilizing Bayesian Optimization (petBOA) with a unique wrapper interface for gradient-free parameter estimation of expensive black-box kinetic models. We provide examples for Python macrokinetic and microkinetic modeling (MKM) tools, such as Cantera and OpenMKM. petBOA leverages surrogate Gaussian processes to approximate and minimize the objective function designed for parameter estimation. Bayesian Optimization (BO) is implemented using the open-source BoTorch toolkit. petBOA employs local and global sensitivity analyses to identify important parameters optimized against experimental data, and leverages pMuTT for consistent kinetic and thermodynamic parameters while perturbing species binding energies within the typical error of conventional DFT exchange-correlation functionals (20-30 kJ/mol). The source code and documentation are hosted on GitHub.
Nature of the problem: An open-source, gradient-free parameter estimation of black-box microkinetic modeling tools, such as OpenMKM is lacking.
Solution method: petBOA is a Python-based tool that utilizes Bayesian Optimization and offers a unique wrapper interface for expensive black-box kinetic models. It leverages the pMuTT library for consistent kinetic and thermodynamic parameter estimation and employs both local and global sensitivity analyses to identify crucial parameters.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.