Byungkyun Kang , Patrick Semon , Corey Melnick , Mancheon Han , Seongjun Mo , Hoonkyung Lee , Gabriel Kotliar , Sangkook Choi
{"title":"ComDMFT v.2.0: Fully self-consistent ab initio GW+EDMFT for the electronic structure of correlated quantum materials","authors":"Byungkyun Kang , Patrick Semon , Corey Melnick , Mancheon Han , Seongjun Mo , Hoonkyung Lee , Gabriel Kotliar , Sangkook Choi","doi":"10.1016/j.cpc.2024.109447","DOIUrl":null,"url":null,"abstract":"<div><div>ComDMFT is a parallel computational package designed to study the electronic structure of correlated quantum materials <em>from first principles</em>. Our approach is based on the combination of <em>first-principles</em> methods and dynamical mean field theories. In version 2.0, we implemented fully-diagrammatic GW+EDMFT <em>from first-principles</em> self-consistently. In this approach, correlated electrons are treated within full GW+EDMFT and the rest are treated within full-GW, seamlessly. This implementation enables the electronic structure calculation of quantum materials with weak, intermediate, and strong electron correlation without prior knowledge of the degree of electron correlation.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"308 ","pages":"Article 109447"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524003709","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
ComDMFT is a parallel computational package designed to study the electronic structure of correlated quantum materials from first principles. Our approach is based on the combination of first-principles methods and dynamical mean field theories. In version 2.0, we implemented fully-diagrammatic GW+EDMFT from first-principles self-consistently. In this approach, correlated electrons are treated within full GW+EDMFT and the rest are treated within full-GW, seamlessly. This implementation enables the electronic structure calculation of quantum materials with weak, intermediate, and strong electron correlation without prior knowledge of the degree of electron correlation.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.