Ke Chen , Kaibing Zhang , Feifei Pang , Xinbo Gao , Guang Shi
{"title":"RMANet: Refined-mixed attention network for progressive low-light image enhancement","authors":"Ke Chen , Kaibing Zhang , Feifei Pang , Xinbo Gao , Guang Shi","doi":"10.1016/j.sigpro.2024.109689","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-scale feature fusion has been recognized as an effective strategy to boost the quality of low-light images. However, most existing methods directly extract multi-scale contextual information from severely degraded and down-sampled low-light images, resulting in a large amount of unexpected noise and degradation contaminating the learned multi-scale features. Moreover, there exist large redundant and overlapping features when directly concatenating multi-scale feature maps, which fails to consider different contributions of different scales. To conquer the above challenges, this paper presents a novel approach termed progressive Refined-Mixed Attention Network (RMANet) for low-light image enhancement. The proposed RMANet first targets a single-scale pre-enhancement and then progressively increases multi-scale spatial-channel attention fusion in a coarse-to-fine fashion. Additionally, we elaborately devise a Refined-Mixed Attention Module (RMAM) to first learn a parallel spatial-channel dominant features and then selectively integrate dominant features in the spatial and channel dimensions across multiple scales. Noticeably, our proposed RMANet is a lightweight yet flexible end-to-end framework that adapts to diverse application scenarios. Thorough experiments carried out upon three popular benchmark databases demonstrate that our approach surpasses existing methods in terms of both quantitative quality metrics and visual quality assessment. The code will be available at <span><span>https://github.com/kbzhang0505/RMANet</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109689"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003098","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-scale feature fusion has been recognized as an effective strategy to boost the quality of low-light images. However, most existing methods directly extract multi-scale contextual information from severely degraded and down-sampled low-light images, resulting in a large amount of unexpected noise and degradation contaminating the learned multi-scale features. Moreover, there exist large redundant and overlapping features when directly concatenating multi-scale feature maps, which fails to consider different contributions of different scales. To conquer the above challenges, this paper presents a novel approach termed progressive Refined-Mixed Attention Network (RMANet) for low-light image enhancement. The proposed RMANet first targets a single-scale pre-enhancement and then progressively increases multi-scale spatial-channel attention fusion in a coarse-to-fine fashion. Additionally, we elaborately devise a Refined-Mixed Attention Module (RMAM) to first learn a parallel spatial-channel dominant features and then selectively integrate dominant features in the spatial and channel dimensions across multiple scales. Noticeably, our proposed RMANet is a lightweight yet flexible end-to-end framework that adapts to diverse application scenarios. Thorough experiments carried out upon three popular benchmark databases demonstrate that our approach surpasses existing methods in terms of both quantitative quality metrics and visual quality assessment. The code will be available at https://github.com/kbzhang0505/RMANet.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.