{"title":"Optimizing the design of a multi-stage tangential roller threshing unit using CFD modeling and experimental studies","authors":"","doi":"10.1016/j.compag.2024.109400","DOIUrl":null,"url":null,"abstract":"<div><p>Rising global population of the world is resulting higher demand for buckwheat being a high-quality food crop. In this study, the multi-stage shearing drum working mode was proposed to solve the problems of easy entanglement, blockage in threshing process due to inconsistency of ripening period, decrease grain breakage rate and loss rate and increase threshing efficiency. The designed threshing unit incorporates key components: frame, feeding wheel, main and secondary threshing drums, discharge unit, and concave plate. FEA and modal analysis were integrated to assure robust structural performance and stability of the threshing components within set limits, which were validated by indoor testing that confirmed the threshing drum’s working frequency did not cause resonance. Single Factor Method identifies optimal conditions: 600 rpm, 7 mm, 1.2 kg/s for minimal grain breakage; 700 rpm, 9 mm, 1.2 kg/s for lowest grain loss. A three-factor, three-level orthogonal experiment validates these findings. In conclusion, optimal results are achieved with a drum speed of 600 rpm, feeding rate of 1.2 kg/s, and a threshing gap of 9 mm thus, minimizing both grain loss and breakage rates.</p></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924007919","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Rising global population of the world is resulting higher demand for buckwheat being a high-quality food crop. In this study, the multi-stage shearing drum working mode was proposed to solve the problems of easy entanglement, blockage in threshing process due to inconsistency of ripening period, decrease grain breakage rate and loss rate and increase threshing efficiency. The designed threshing unit incorporates key components: frame, feeding wheel, main and secondary threshing drums, discharge unit, and concave plate. FEA and modal analysis were integrated to assure robust structural performance and stability of the threshing components within set limits, which were validated by indoor testing that confirmed the threshing drum’s working frequency did not cause resonance. Single Factor Method identifies optimal conditions: 600 rpm, 7 mm, 1.2 kg/s for minimal grain breakage; 700 rpm, 9 mm, 1.2 kg/s for lowest grain loss. A three-factor, three-level orthogonal experiment validates these findings. In conclusion, optimal results are achieved with a drum speed of 600 rpm, feeding rate of 1.2 kg/s, and a threshing gap of 9 mm thus, minimizing both grain loss and breakage rates.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.