{"title":"Phytochemical profiles, bioactivities, and molecular docking and molecular dynamics approaches of endemic Campanula baskilensis Behçet (campanulaceae)","authors":"","doi":"10.1016/j.jics.2024.101358","DOIUrl":null,"url":null,"abstract":"<div><p><em>Campanula</em> species have phenolic derivatives with a broad biological potential. This study aimed to investigate the chemical contents, bioactivities, and prediction of the biological effect mechanism using the molecular docking study for <em>C. baskilensis</em> (CB) leaf (L), root (R), and stem (S) extracts.</p><p>CBL gave the highest phenolic contents as hesperidin at 7.56 mg/g extract. Total phenolic and flavonoid contents of CBS were determined as 3.12 ± 0.05 mg GAE/g and 1.11 ± 0.11 mg QE/g, respectively. CBS and CBL exhibited high DPPH<sup>•</sup> scavenging, H<sub>2</sub>O<sub>2</sub> scavenging, AChE, BChE, carbonic anhydrase, lipase, and tyrosinase inhibition effects and demonstrated potent antimicrobial activity. The strong phenolic components of CBS and CBL extracts contributed to their biological activities. According to the molecular docking results, a high inhibition effect was observed on the inhibition activities due to the presence of hesperidin, which is the highest main component of the extracts. Additionally, docking studies were performed on hesperidin for the first time. Dynamics study showed that the interaction between the hesperidin and BChE increased stability, producing a stable complex form within 100 ns. In conclusion, <em>C. baskilensis</em> extracts, especially hesperidin, may be promising potential sources for neurological diseases and complementary medicine.</p></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019452224002383","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Campanula species have phenolic derivatives with a broad biological potential. This study aimed to investigate the chemical contents, bioactivities, and prediction of the biological effect mechanism using the molecular docking study for C. baskilensis (CB) leaf (L), root (R), and stem (S) extracts.
CBL gave the highest phenolic contents as hesperidin at 7.56 mg/g extract. Total phenolic and flavonoid contents of CBS were determined as 3.12 ± 0.05 mg GAE/g and 1.11 ± 0.11 mg QE/g, respectively. CBS and CBL exhibited high DPPH• scavenging, H2O2 scavenging, AChE, BChE, carbonic anhydrase, lipase, and tyrosinase inhibition effects and demonstrated potent antimicrobial activity. The strong phenolic components of CBS and CBL extracts contributed to their biological activities. According to the molecular docking results, a high inhibition effect was observed on the inhibition activities due to the presence of hesperidin, which is the highest main component of the extracts. Additionally, docking studies were performed on hesperidin for the first time. Dynamics study showed that the interaction between the hesperidin and BChE increased stability, producing a stable complex form within 100 ns. In conclusion, C. baskilensis extracts, especially hesperidin, may be promising potential sources for neurological diseases and complementary medicine.
期刊介绍:
The Journal of the Indian Chemical Society publishes original, fundamental, theorical, experimental research work of highest quality in all areas of chemistry, biochemistry, medicinal chemistry, electrochemistry, agrochemistry, chemical engineering and technology, food chemistry, environmental chemistry, etc.