Efficient visualization of latent fingermarks is vital in forensic science considering variables like surface type, deposition time, and treatment method. Iodine fuming, a simple, non-destructive method, faces challenges with rapid fading of developed marks causing hindrance in documenting the developed marks. The present research introduces a novel iodine fuming procedure enhanced by a simple pre-treatment with tetra-n-butylammonium iodide (TBAI), a white powdery material, ensuring prolonged fixation of visualized marks. The method, effective across surfaces, both porous as well as non-porous stabilizes iodine fumed fingermarks via formation of tetra-n-butylammonium triiodide (TBATI), as confirmed through spectroscopic analyses with UV–Visible, Fourier-transformed infrared and Raman spectroscopy. Aged fingermarks up to 4 weeks developed on different surfaces responded positively to the method. The suggested method is non-destructive and simple to use.
{"title":"Stabilizing latent fingermarks developed with iodine fuming: A new method","authors":"Varinder Singh , P. Mandal , Stojkovikj Sasho , Metodija Najdoski , Oklevski Slobodan , O.P. Jasuja","doi":"10.1016/j.jics.2025.101694","DOIUrl":"10.1016/j.jics.2025.101694","url":null,"abstract":"<div><div>Efficient visualization of latent fingermarks is vital in forensic science considering variables like surface type, deposition time, and treatment method. Iodine fuming, a simple, non-destructive method, faces challenges with rapid fading of developed marks causing hindrance in documenting the developed marks. The present research introduces a novel iodine fuming procedure enhanced by a simple pre-treatment with tetra-<em>n</em>-butylammonium iodide (TBAI), a white powdery material, ensuring prolonged fixation of visualized marks. The method, effective across surfaces, both porous as well as non-porous stabilizes iodine fumed fingermarks via formation of tetra-<em>n</em>-butylammonium triiodide (TBATI), as confirmed through spectroscopic analyses with UV–Visible, Fourier-transformed infrared and Raman spectroscopy. Aged fingermarks up to 4 weeks developed on different surfaces responded positively to the method. The suggested method is non-destructive and simple to use.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"102 5","pages":"Article 101694"},"PeriodicalIF":3.2,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143760655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-31DOI: 10.1016/j.jics.2025.101696
Ali H. Bashal , Mohammed A.H. Khalafalla , Rafat M. Ibrahim
This paper presents the preparation and characterization of pure and metallically supported bentonite with different percentages of Co (1 % wt.) and Ni (5 % wt.). The preparation used the wet impregnation process method. The resulting composites were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX) analysis. These characterizations indicated the greater metallic Co/Ni dispersion and higher specific surface area for the resulting composite. Moreover, the metallic nanoparticles in 1 %Co -5 %Ni/Bentonite have an intermediate dimension between that of 0 %Co–5 %Ni/Bentonite and 1 %Co–0 %Ni/Bentonite composites. Such intermediacy in the nanostructure of 1 %Co–5 %Ni/Bentonite may be associated with its measured dielectric properties characterized by the least permittivity and loss factor as compared to 0 %Co–5 %Ni/Bentonite and 1 %Co–0 %Ni/Bentonite. Interestingly, our semiempirical quantum calculations revealed that 1 %Co–5 %Ni/Bentonite has intermediate electrochemical properties (hardness and electronegativity) relative to those for 0 %Co–5 %Ni/Bentonite and 1 %Co–0 %Ni/Bentonite, indicating the optimal reactivity of 1 %Co–5 %Ni/Bentonite. Our results are, thus, pertinent to catalysis and other applications pursuing optimal electrochemical properties of Ni/Bentonite.
{"title":"Experimental and semiempirical quantum investigations of the effect of Cobalt addition on the dielectric properties of Nickle-Bentonite composite","authors":"Ali H. Bashal , Mohammed A.H. Khalafalla , Rafat M. Ibrahim","doi":"10.1016/j.jics.2025.101696","DOIUrl":"10.1016/j.jics.2025.101696","url":null,"abstract":"<div><div>This paper presents the preparation and characterization of pure and metallically supported bentonite with different percentages of Co (1 % wt.) and Ni (5 % wt.). The preparation used the wet impregnation process method. The resulting composites were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX) analysis. These characterizations indicated the greater metallic Co/Ni dispersion and higher specific surface area for the resulting composite. Moreover, the metallic nanoparticles in 1 %Co -5 %Ni/Bentonite have an intermediate dimension between that of 0 %Co–5 %Ni/Bentonite and 1 %Co–0 %Ni/Bentonite composites. Such intermediacy in the nanostructure of 1 %Co–5 %Ni/Bentonite may be associated with its measured dielectric properties characterized by the least permittivity and loss factor as compared to 0 %Co–5 %Ni/Bentonite and 1 %Co–0 %Ni/Bentonite. Interestingly, our semiempirical quantum calculations revealed that 1 %Co–5 %Ni/Bentonite has intermediate electrochemical properties (hardness and electronegativity) relative to those for 0 %Co–5 %Ni/Bentonite and 1 %Co–0 %Ni/Bentonite, indicating the optimal reactivity of 1 %Co–5 %Ni/Bentonite. Our results are, thus, pertinent to catalysis and other applications pursuing optimal electrochemical properties of Ni/Bentonite.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"102 5","pages":"Article 101696"},"PeriodicalIF":3.2,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143747733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-28DOI: 10.1016/j.jics.2025.101686
S. Pauline Sheeba , D Benny Anburaj , I. Devadoss , R. Selvam , M. Sasikumar , V. Jeevanantham
For future uses, there is a great need for the creation of energy storage materials with a high specific energy. Supercapacitors have many potential uses, including in business energy management systems, solar energy harvesting, and hybrid electric cars. The use of a nanocomposite of ZnO and RGO with PVA in the manufacture of supercapacitors is detailed here. An affordable technique that used ultrasonic-assisted solution synthesis was employed to create the ZnO/RGO@PVA nanocomposite. Analytical techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and confocal Raman spectroscopy were used to analyze the generated ZnO and ZnO/RGO@PVA nanocomposites. The XRD results confirmed that the nanocomposite was successfully synthesized and that the nanoparticles had a correct crystal structure. Raman spectroscopy confirmed the nanocomposite's hybridization, while scanning electron microscopy and transmission electron microscopy showed ZnO nanoparticles embellishing the RGO sheets. At a current density of 2 A g−1, the ZnO/RGO@PVA exhibits a high specific capacitance of 1222 F g−1, its greater surface area and good ionic diffusion, as shown by the comprehensive morphological study. With a scan rate of 10 mV s−1, the manufactured supercapacitor device has a high capacitance retention of around 90 % and outstanding electrochemical performance over 5000 cycles. The findings indicate that the nanocomposite of ZnO and RGO with PVA might be used as an electrode material in supercapacitors.
{"title":"Reduced graphene enameled ZnO/PVA nanosheets as electrode materials for high-performance supercapacitors","authors":"S. Pauline Sheeba , D Benny Anburaj , I. Devadoss , R. Selvam , M. Sasikumar , V. Jeevanantham","doi":"10.1016/j.jics.2025.101686","DOIUrl":"10.1016/j.jics.2025.101686","url":null,"abstract":"<div><div>For future uses, there is a great need for the creation of energy storage materials with a high specific energy. Supercapacitors have many potential uses, including in business energy management systems, solar energy harvesting, and hybrid electric cars. The use of a nanocomposite of ZnO and RGO with PVA in the manufacture of supercapacitors is detailed here. An affordable technique that used ultrasonic-assisted solution synthesis was employed to create the ZnO/RGO@PVA nanocomposite. Analytical techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and confocal Raman spectroscopy were used to analyze the generated ZnO and ZnO/RGO@PVA nanocomposites. The XRD results confirmed that the nanocomposite was successfully synthesized and that the nanoparticles had a correct crystal structure. Raman spectroscopy confirmed the nanocomposite's hybridization, while scanning electron microscopy and transmission electron microscopy showed ZnO nanoparticles embellishing the RGO sheets. At a current density of 2 A g<sup>−1</sup>, the ZnO/RGO@PVA exhibits a high specific capacitance of 1222 F g<sup>−1</sup>, its greater surface area and good ionic diffusion, as shown by the comprehensive morphological study. With a scan rate of 10 mV s<sup>−1</sup>, the manufactured supercapacitor device has a high capacitance retention of around 90 % and outstanding electrochemical performance over 5000 cycles. The findings indicate that the nanocomposite of ZnO and RGO with PVA might be used as an electrode material in supercapacitors.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"102 5","pages":"Article 101686"},"PeriodicalIF":3.2,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143738394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-27DOI: 10.1016/j.jics.2025.101687
Hao Liu, Xiutang Chu, Hailin Zhao, Yenan Liu
The diesel oxidation catalyst (DOCs) doped with six additives (La, Ce, Ba, Fe, Mn, Co) were selected. Based on X-ray diffraction (XRD) analysis, the influence of different additives on the crystal form of the alumina support in the catalyst was studied. Based on X-ray photoelectron spectroscopy (XPS) analysis, the influence of different additives on the aluminum coordination state on the surface of alumina was investigated. Based on H2 temperature-programmed reduction (H2-TPR) and CO pulse reduction experiments, the influence of different additives on the redox performance of DOC was explored. Based on CO pulse adsorption, the influence of different additives on the precious metal dispersion of DOC was studied. Based on a small-scale evaluation device, the influence rules of different additives and their contents on the performance and hydrothermal stability of DOC were investigated. The experimental results show that among the six additives, La and Ba have the best effect on improving the hydrothermal stability of DOC. Further research shows that when the doping amount of La is 5 % and that of Ba is 3 %, La and Ba have the best effect on improving the performance and hydrothermal stability of DOC. Compared with the La additive, the Ba additive has a stronger effect on improving the hydrothermal stability of DOC. Characterization analysis experiments confirm that La and Ba stabilize and disperse Pt and Pd particles through the La–O–Al and Ba–O–Al interfaces formed on the surface of alumina, increasing the number of active centers and their hydrothermal aging resistance.
{"title":"Impact of non-precious metal additives on the performance and hydrothermal stability of DOC coatings","authors":"Hao Liu, Xiutang Chu, Hailin Zhao, Yenan Liu","doi":"10.1016/j.jics.2025.101687","DOIUrl":"10.1016/j.jics.2025.101687","url":null,"abstract":"<div><div>The diesel oxidation catalyst (DOCs) doped with six additives (La, Ce, Ba, Fe, Mn, Co) were selected. Based on X-ray diffraction (XRD) analysis, the influence of different additives on the crystal form of the alumina support in the catalyst was studied. Based on X-ray photoelectron spectroscopy (XPS) analysis, the influence of different additives on the aluminum coordination state on the surface of alumina was investigated. Based on H<sub>2</sub> temperature-programmed reduction (H<sub>2</sub>-TPR) and CO pulse reduction experiments, the influence of different additives on the redox performance of DOC was explored. Based on CO pulse adsorption, the influence of different additives on the precious metal dispersion of DOC was studied. Based on a small-scale evaluation device, the influence rules of different additives and their contents on the performance and hydrothermal stability of DOC were investigated. The experimental results show that among the six additives, La and Ba have the best effect on improving the hydrothermal stability of DOC. Further research shows that when the doping amount of La is 5 % and that of Ba is 3 %, La and Ba have the best effect on improving the performance and hydrothermal stability of DOC. Compared with the La additive, the Ba additive has a stronger effect on improving the hydrothermal stability of DOC. Characterization analysis experiments confirm that La and Ba stabilize and disperse Pt and Pd particles through the La–O–Al and Ba–O–Al interfaces formed on the surface of alumina, increasing the number of active centers and their hydrothermal aging resistance.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"102 5","pages":"Article 101687"},"PeriodicalIF":3.2,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143747734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-25DOI: 10.1016/j.jics.2025.101681
Pankaj Verma, Prabhakar Chetti
Heterocirculenes have emerged as promising candidates for novel materials due to their unique molecular structures and intriguing electronic properties. This work's main objective is to assess hetero[8]circulenes' charge transport and optoelectronic characteristics. The comprehensive analyses of all the hetero[8]circulenes are executed by using Density functional theory (DFT) and Time-Dependent Density functional theory (TD-DFT). Molecular Orbitals Pictures (MOPs) i.e. Lowest unoccupied molecular orbital (LUMO) and Highest occupied molecular orbital (HOMO), Electron affinities (EA), Hole Extraction Potential (HEP), Ionization potential (IP), Electron Extraction Potential (EEP), NICS (0), Density of states (DOS), Molecular Electrostatic Potential maps (MEP), and Reorganization energies (Z), of all the studied molecules were examined. The hole and electron transfer integrals, and rate constant for all the molecule are also investigated. The Thiophene and Selenophene containing heterocirculenes show the best charge transport properties, and also, HS3 shows the lowest ZH of 36 meV. The difference between hole and electron Z is less than 50 meV, so these are also appropriate as ambipolar materials. The findings of the study indicate the potential utility of Heterocirculenes as organic materials for optoelectronic applications.
{"title":"Charge transport and optoelectronic properties in polycyclic Hetero[8]circulenes: A computational study","authors":"Pankaj Verma, Prabhakar Chetti","doi":"10.1016/j.jics.2025.101681","DOIUrl":"10.1016/j.jics.2025.101681","url":null,"abstract":"<div><div>Heterocirculenes have emerged as promising candidates for novel materials due to their unique molecular structures and intriguing electronic properties. This work's main objective is to assess hetero[8]circulenes' charge transport and optoelectronic characteristics. The comprehensive analyses of all the hetero[8]circulenes are executed by using Density functional theory (DFT) and Time-Dependent Density functional theory (TD-DFT). Molecular Orbitals Pictures (MOPs) i.e. Lowest unoccupied molecular orbital (LUMO) and Highest occupied molecular orbital (HOMO), Electron affinities (EA), Hole Extraction Potential (HEP), Ionization potential (IP), Electron Extraction Potential (EEP), NICS (0), Density of states (DOS), Molecular Electrostatic Potential maps (MEP), and Reorganization energies (Z), of all the studied molecules were examined. The hole and electron transfer integrals, and rate constant for all the molecule are also investigated. The Thiophene and Selenophene containing heterocirculenes show the best charge transport properties, and also, HS3 shows the lowest Z<sub>H</sub> of 36 meV. The difference between hole and electron Z is less than 50 meV, so these are also appropriate as ambipolar materials. The findings of the study indicate the potential utility of Heterocirculenes as organic materials for optoelectronic applications.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"102 5","pages":"Article 101681"},"PeriodicalIF":3.2,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143737774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-24DOI: 10.1016/j.jics.2025.101684
Amro Ahmed Taha , Mai M. Khalaf , Mohamed Gouda , Hany M. Abd El-Lateef , Aly Abdou
This study aims to develop and evaluate novel Fe(III) and Co(II) metal complexes derived from imidazoleacetic acid (IA) and a Schiff base (SB) ligand, targeting enhanced antimicrobial and anti-inflammatory activities. The novelty of this work lies in the strategic metal coordination, which modulates the electronic properties and biological efficacy of the ligands. Comprehensive characterization techniques, including elemental analysis, IR spectroscopy, magnetic moment measurements, electronic spectra, mass spectrometry, thermal analysis, and DFT calculations, confirmed the successful formation of the complexes with a 1:1:1 (M:IA:SB) stoichiometry. Structural analysis revealed that FeIASB adopts an octahedral geometry with one coordinated water molecule, whereas CoIASB exhibits an octahedral geometry with two coordinated water molecules. DFT calculations provided key insights into the electronic modifications induced by metal coordination, highlighting a significant reduction in the energy gap and increased molecular softness, both of which enhance the reactivity and predicted biological activity of the complexes. Biological evaluations demonstrated that FeIASB and CoIASB exhibited remarkable antimicrobial activity against both Gram-positive and Gram-negative bacteria, outperforming the free ligands and showing comparable efficacy to the standard antibiotic Amoxicillin. Similarly, antifungal assessments against Candida albicans and Aspergillus niger confirmed superior activity compared to the uncoordinated ligands. The minimum inhibitory concentration (MIC) values further validated the enhanced potency of the metal complexes. Additionally, the complexes displayed significant anti-inflammatory activity, with FeIASB exhibiting the highest potency, as indicated by its IC50 value closely approaching that of the standard drug. Molecular docking studies against DNA gyrase B revealed that FeIASB possessed the strongest binding affinity, forming multiple hydrogen bonds with key amino acid residues, underscoring its potential as an antibacterial agent. In conclusion, the synthesized FeIASB and CoIASB metal complexes not only offer promising antimicrobial and antifungal properties but also demonstrate substantial anti-inflammatory potential. The electronic modifications induced by metal coordination significantly enhance biological activity, positioning these complexes as promising candidates for future therapeutic applications.
{"title":"Structure, Reactivity, and Bioactivity of Novel Schiff base-Imidazoleacetic Acid Metal Complexes of Fe(III) and Co(II): In Vitro Antimicrobial, Anti-inflammatory Activity, and Molecular Docking Studies","authors":"Amro Ahmed Taha , Mai M. Khalaf , Mohamed Gouda , Hany M. Abd El-Lateef , Aly Abdou","doi":"10.1016/j.jics.2025.101684","DOIUrl":"10.1016/j.jics.2025.101684","url":null,"abstract":"<div><div>This study aims to develop and evaluate novel Fe(III) and Co(II) metal complexes derived from imidazoleacetic acid (IA) and a Schiff base (SB) ligand, targeting enhanced antimicrobial and anti-inflammatory activities. The novelty of this work lies in the strategic metal coordination, which modulates the electronic properties and biological efficacy of the ligands. Comprehensive characterization techniques, including elemental analysis, IR spectroscopy, magnetic moment measurements, electronic spectra, mass spectrometry, thermal analysis, and DFT calculations, confirmed the successful formation of the complexes with a 1:1:1 (M:IA:SB) stoichiometry. Structural analysis revealed that FeIASB adopts an octahedral geometry with one coordinated water molecule, whereas CoIASB exhibits an octahedral geometry with two coordinated water molecules. DFT calculations provided key insights into the electronic modifications induced by metal coordination, highlighting a significant reduction in the energy gap and increased molecular softness, both of which enhance the reactivity and predicted biological activity of the complexes. Biological evaluations demonstrated that FeIASB and CoIASB exhibited remarkable antimicrobial activity against both Gram-positive and Gram-negative bacteria, outperforming the free ligands and showing comparable efficacy to the standard antibiotic Amoxicillin. Similarly, antifungal assessments against <em>Candida albicans</em> and <em>Aspergillus niger</em> confirmed superior activity compared to the uncoordinated ligands. The minimum inhibitory concentration (MIC) values further validated the enhanced potency of the metal complexes. Additionally, the complexes displayed significant anti-inflammatory activity, with FeIASB exhibiting the highest potency, as indicated by its IC<sub>50</sub> value closely approaching that of the standard drug. Molecular docking studies against DNA gyrase B revealed that FeIASB possessed the strongest binding affinity, forming multiple hydrogen bonds with key amino acid residues, underscoring its potential as an antibacterial agent. In conclusion, the synthesized FeIASB and CoIASB metal complexes not only offer promising antimicrobial and antifungal properties but also demonstrate substantial anti-inflammatory potential. The electronic modifications induced by metal coordination significantly enhance biological activity, positioning these complexes as promising candidates for future therapeutic applications.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"102 5","pages":"Article 101684"},"PeriodicalIF":3.2,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143704487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study tackles some aspects of the isoflavonoid compounds with relevant antioxidative, antiosteoporotic, anticarcinogenic, and estrogenic properties. A theoretical study with the usage of the DFT/B3LYP has been carried for one of these species such as Lupinalbin B. This has highlighted structural and electronic features based in particular on the frontier MOs, molecular electrostatic potential and global reactivity descriptors. The in-silico predictions of the physicochemical properties and lipophilicity suggest that the molecule may act as a potential drug consistently with some requirement of the Lipinski's rule of five. In particular, the compound shows a moderate water solubility. Pharmacokinetic properties, drug-likeness, and medicinal chemistry friendliness indicate potential medicinal aspects. The toxicity test results demonstrate inactivity of Lupinalbin B molecule towards a large number of targets. The study focuses, also, on Lupinalbin B's active forms. The latter are useful for discussing the antioxidant mechanisms such as those of the known HAT, SET-PT, and SPLET models.
{"title":"A theoretical study of molecular reactivity in medicinal chemistry: Antioxidant properties of isoflavonoid Lupinalbin B in its active forms","authors":"Ikhlas Khettache , Abdelatif Messaoudi , Serge Antonczak","doi":"10.1016/j.jics.2025.101678","DOIUrl":"10.1016/j.jics.2025.101678","url":null,"abstract":"<div><div>This study tackles some aspects of the isoflavonoid compounds with relevant antioxidative, antiosteoporotic, anticarcinogenic, and estrogenic properties. A theoretical study with the usage of the DFT/B3LYP has been carried for one of these species such as Lupinalbin B. This has highlighted structural and electronic features based in particular on the frontier MOs, molecular electrostatic potential and global reactivity descriptors. The <em>in-silico</em> predictions of the physicochemical properties and lipophilicity suggest that the molecule may act as a potential drug consistently with some requirement of the Lipinski's rule of five. In particular, the compound shows a moderate water solubility. Pharmacokinetic properties, drug-likeness, and medicinal chemistry friendliness indicate potential medicinal aspects. The toxicity test results demonstrate inactivity of Lupinalbin B molecule towards a large number of targets. The study focuses, also, on Lupinalbin B's active forms. The latter are useful for discussing the antioxidant mechanisms such as those of the known HAT, SET-PT, and SPLET models.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"102 5","pages":"Article 101678"},"PeriodicalIF":3.2,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143724668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-24DOI: 10.1016/j.jics.2025.101682
Hilal Mete Günaydin , Melisa Lalikoglu , Yavuz Selim Aşçı
Malic acid (H2mA), which is one of the dicarboxylic acids, plays a vital role in the food industry. In this extraction study, the separation of malic acid from its aqueous medium using an effective solvent-extractant mixture was investigated. This article aims to emphasize the efficacy of ionic liquids (IL), which are green solvents especially 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) against conventional solvents. Some of these solvents are methyl isobutyl ketone (MIBK), toluene, cyclohexyl acetate (CHA), 1-decanol, dimethyl phthalate (DMP). Tri-n-propylamine (TPA) and tri-n-octylphosphine oxide (TOPO) were used as extractants in the experiments. The distribution coefficient (D), extraction efficiency (E%), and loading factor (Z) were calculated. In the physical extraction experiments, the extraction efficiency was observed to be in the range of 43.30–47.67 %. The reactive extraction results showed that high extraction efficiency was obtained with organic phases prepared with TPA and diluent. The extraction efficiency reached around 99 % at a TPA concentration of 1.78 mol.L−1 in MIBK. Although the results with conventional solvents and BMIM-PF6 are close to each other, it can be stated that the high regeneration capacity and low volatility of ionic liquids may be the reason for preference compared to conventional solvents.
{"title":"Evaluation of the efficiency of reactive extraction of malic acid using TPA or TOPO in imidazolium-based ionic liquid or conventional solvents","authors":"Hilal Mete Günaydin , Melisa Lalikoglu , Yavuz Selim Aşçı","doi":"10.1016/j.jics.2025.101682","DOIUrl":"10.1016/j.jics.2025.101682","url":null,"abstract":"<div><div>Malic acid (H<sub>2</sub>mA), which is one of the dicarboxylic acids, plays a vital role in the food industry. In this extraction study, the separation of malic acid from its aqueous medium using an effective solvent-extractant mixture was investigated. This article aims to emphasize the efficacy of ionic liquids (IL), which are green solvents especially 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF<sub>6</sub>) against conventional solvents. Some of these solvents are methyl isobutyl ketone (MIBK), toluene, cyclohexyl acetate (CHA), 1-decanol, dimethyl phthalate (DMP). Tri-n-propylamine (TPA) and tri-n-octylphosphine oxide (TOPO) were used as extractants in the experiments. The distribution coefficient (D), extraction efficiency (E%), and loading factor (Z) were calculated. In the physical extraction experiments, the extraction efficiency was observed to be in the range of 43.30–47.67 %. The reactive extraction results showed that high extraction efficiency was obtained with organic phases prepared with TPA and diluent. The extraction efficiency reached around 99 % at a TPA concentration of 1.78 mol.L<sup>−1</sup> in MIBK. Although the results with conventional solvents and BMIM-PF<sub>6</sub> are close to each other, it can be stated that the high regeneration capacity and low volatility of ionic liquids may be the reason for preference compared to conventional solvents.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"102 5","pages":"Article 101682"},"PeriodicalIF":3.2,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143696753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-22DOI: 10.1016/j.jics.2025.101676
S. Praveen , M. Sindhuja , K. Sankaranarayanan
In this study, g-C3N4/NiO and pure g-C3N4 electrodes were prepared employing one pot hydrothermal technique and thermal decomposition method for supercapacitor applications. The physiochemical properties of the prepared electrodes were examined using various analytical techniques such as XRD, SEM and FTIR. Electrochemical studies were conducted on g-C3N4 electrodes and g-C3N4/NiO electrodes in 1 M KOH through CV, GCD, and EIS. The specific capacitance of the g-C3N4/NiO electrode material is 207.8 F/g, significantly higher than that of bare g-C3N4 electrodes (18 F/g). Additionally, g-C3N4/NiO nanocomposite electrodes have good cycling stability, retaining 71 % capacitance and 88 % coulombic efficiency after 1000 cycles. Incorporating metal oxide nanoparticles into the g-C3N4 matrix enhances the electrochemical performance of the nanocomposite material.
{"title":"Investigating the electrochemical properties of g-C3N4/NiO nanocomposites for energy storage applications","authors":"S. Praveen , M. Sindhuja , K. Sankaranarayanan","doi":"10.1016/j.jics.2025.101676","DOIUrl":"10.1016/j.jics.2025.101676","url":null,"abstract":"<div><div>In this study, g-C<sub>3</sub>N<sub>4</sub>/NiO and pure g-C<sub>3</sub>N<sub>4</sub> electrodes were prepared employing one pot hydrothermal technique and thermal decomposition method for supercapacitor applications. The physiochemical properties of the prepared electrodes were examined using various analytical techniques such as XRD, SEM and FTIR. Electrochemical studies were conducted on g-C<sub>3</sub>N<sub>4</sub> electrodes and g-C<sub>3</sub>N<sub>4</sub>/NiO electrodes in 1 M KOH through CV, GCD, and EIS. The specific capacitance of the g-C<sub>3</sub>N<sub>4</sub>/NiO electrode material is 207.8 F/g, significantly higher than that of bare g-C<sub>3</sub>N<sub>4</sub> electrodes (18 F/g). Additionally, g-C<sub>3</sub>N<sub>4</sub>/NiO nanocomposite electrodes have good cycling stability, retaining 71 % capacitance and 88 % coulombic efficiency after 1000 cycles. Incorporating metal oxide nanoparticles into the g-C<sub>3</sub>N<sub>4</sub> matrix enhances the electrochemical performance of the nanocomposite material.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"102 5","pages":"Article 101676"},"PeriodicalIF":3.2,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143684227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-22DOI: 10.1016/j.jics.2025.101677
Fatih Eyduran, Yeşim Yanar Atal
In this study, novel 6-aminouracil azo dyes (BM1-BM4) were synthesized preparing by 6-aminouracil with some diazotized amino phenols according to the diazo-coupling method. The chemical structures of BM1-BM4 were characterized using FTIR, Micro Element analysis and 1H,13C NMR spectroscopic techniques. The results show that the chemical structures of BM1-BM4 among the possible tautomers in DMSO are compatible with the hydrazone structure. The effects of acid, base and solvent change on the absorption spectra of the dyes were examined. BM1-BM3 were shown exist in a single tautomeric form in methanol and in acidic media, in more than one tautomeric form in basic media probably shown ionization.
{"title":"Synthesis and spectroscopic investigation of 6-amino-5-(2-hydroxy-5-substituephenylazoyl)uracil dyes","authors":"Fatih Eyduran, Yeşim Yanar Atal","doi":"10.1016/j.jics.2025.101677","DOIUrl":"10.1016/j.jics.2025.101677","url":null,"abstract":"<div><div>In this study, novel 6-aminouracil azo dyes (BM1-BM4) were synthesized preparing by 6-aminouracil with some diazotized amino phenols according to the diazo-coupling method. The chemical structures of BM1-BM4 were characterized using FTIR, Micro Element analysis and <sup>1</sup>H,<sup>13</sup>C NMR spectroscopic techniques. The results show that the chemical structures of BM1-BM4 among the possible tautomers in DMSO are compatible with the hydrazone structure. The effects of acid, base and solvent change on the absorption spectra of the dyes were examined. BM1-BM3 were shown exist in a single tautomeric form in methanol and in acidic media, in more than one tautomeric form in basic media probably shown ionization.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"102 5","pages":"Article 101677"},"PeriodicalIF":3.2,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143684226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}