{"title":"Thermodynamic and propulsive characterization of nitro-substituted quadricyclane","authors":"","doi":"10.1016/j.jics.2024.101359","DOIUrl":null,"url":null,"abstract":"<div><p>This investigation delves into the potential of Octa-nitro Quadricyclane (ONQC), a nitro-substituted quadricyclane, as a next-generation energetic material. Employing a robust B3LYP-gCP-D3/6-31G(d) computational approach, the study evaluates key material properties of ONQC, including strain energy (700.2 kJ/mol), enthalpy of formation (668.6 kJ/mol), and density (2.08 g/cm³). These enhanced properties result in predicted increases of 124 % in detonation pressure and 49.5 % in detonation velocity compared to TNT, significantly surpassing the performance of conventional high-energy density materials. Additionally, ONQC's suitability as an energetic additive in bipropellant formulations was evaluated with NASA's Chemical Equilibrium with Applications (CEA) software. The primary focus was on bipropellant formulations employing kerosene-based fuels (RP-1, JP-10, JP-5, etc.) and liquid oxygen (LOX) as the oxidizer. Incorporating ONQC into propellant formulations provides substantial improvements in specific impulse and reduces oxidizer requirements. This makes ONQC a promising candidate for advancing propulsion technology.</p></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019452224002395/pdfft?md5=328b1bc53930ec90e795c1999a8438c9&pid=1-s2.0-S0019452224002395-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019452224002395","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This investigation delves into the potential of Octa-nitro Quadricyclane (ONQC), a nitro-substituted quadricyclane, as a next-generation energetic material. Employing a robust B3LYP-gCP-D3/6-31G(d) computational approach, the study evaluates key material properties of ONQC, including strain energy (700.2 kJ/mol), enthalpy of formation (668.6 kJ/mol), and density (2.08 g/cm³). These enhanced properties result in predicted increases of 124 % in detonation pressure and 49.5 % in detonation velocity compared to TNT, significantly surpassing the performance of conventional high-energy density materials. Additionally, ONQC's suitability as an energetic additive in bipropellant formulations was evaluated with NASA's Chemical Equilibrium with Applications (CEA) software. The primary focus was on bipropellant formulations employing kerosene-based fuels (RP-1, JP-10, JP-5, etc.) and liquid oxygen (LOX) as the oxidizer. Incorporating ONQC into propellant formulations provides substantial improvements in specific impulse and reduces oxidizer requirements. This makes ONQC a promising candidate for advancing propulsion technology.
期刊介绍:
The Journal of the Indian Chemical Society publishes original, fundamental, theorical, experimental research work of highest quality in all areas of chemistry, biochemistry, medicinal chemistry, electrochemistry, agrochemistry, chemical engineering and technology, food chemistry, environmental chemistry, etc.