Green synthesis of reduced graphene oxide using Persea americana mill. extract: Characterization, oxygen reduction reaction and antibacterial application
{"title":"Green synthesis of reduced graphene oxide using Persea americana mill. extract: Characterization, oxygen reduction reaction and antibacterial application","authors":"","doi":"10.1016/j.diamond.2024.111560","DOIUrl":null,"url":null,"abstract":"<div><p>Reduced graphene oxide (rGO) has garnered tremendous attention due to its salient properties that make it applicable in various electrochemical and environmental remediation fields. However, the commonly used chemical method to obtain rGO from graphene oxide (GO) involves toxic chemicals making both the process and product toxic and expensive. In the present work, the suitability of Avocado (<em>Persea americana</em> Mill) seed extract to reduce as-synthesized GO to rGO was investigated fully by optimising the reducing parameters such as the pH, temperature, amount of extract and reduction time. The formation of rGO from GO was confirmed with UV–Vis spectrophotometry (UV–Vis), Fourier Transform Infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and the thermogravimetric analysis (TGA). The optimal conditions for reducing GO with avocado seed extract are pH 8, 100 °C, and 12 h. The average thickness and width for the rGO was 5.55 nm and 11.39 nm accordingly. While GO exhibited a ζ of −29.9.3 mV, the reduced GO possessed a − 38.2 mV. Calculations from the Kotouckey-Levich's equation demonstrated that the obtained rGO can potentially be applied as an oxygen reduction reaction (ORR) catalyst for the generation of hydrogen peroxide since it follows a 2e<sup>−</sup> pathway mechanism where hydrogen peroxide is generated as an intermediate. Additionally, the avocado seed extract reduced GO demonstrated a slight growth inhibition of methicillin resistant <em>S</em>. <em>aureus</em> (MRSA).</p></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925963524007738/pdfft?md5=751460b2c0e4c0bf596ada72ae4f801b&pid=1-s2.0-S0925963524007738-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524007738","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Reduced graphene oxide (rGO) has garnered tremendous attention due to its salient properties that make it applicable in various electrochemical and environmental remediation fields. However, the commonly used chemical method to obtain rGO from graphene oxide (GO) involves toxic chemicals making both the process and product toxic and expensive. In the present work, the suitability of Avocado (Persea americana Mill) seed extract to reduce as-synthesized GO to rGO was investigated fully by optimising the reducing parameters such as the pH, temperature, amount of extract and reduction time. The formation of rGO from GO was confirmed with UV–Vis spectrophotometry (UV–Vis), Fourier Transform Infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and the thermogravimetric analysis (TGA). The optimal conditions for reducing GO with avocado seed extract are pH 8, 100 °C, and 12 h. The average thickness and width for the rGO was 5.55 nm and 11.39 nm accordingly. While GO exhibited a ζ of −29.9.3 mV, the reduced GO possessed a − 38.2 mV. Calculations from the Kotouckey-Levich's equation demonstrated that the obtained rGO can potentially be applied as an oxygen reduction reaction (ORR) catalyst for the generation of hydrogen peroxide since it follows a 2e− pathway mechanism where hydrogen peroxide is generated as an intermediate. Additionally, the avocado seed extract reduced GO demonstrated a slight growth inhibition of methicillin resistant S. aureus (MRSA).
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.