Kinetics study on inhibiting battery thermal runaway using an inorganic phase change material with a super high thermochemical storage capacity

IF 6.9 2区 环境科学与生态学 Q1 ENGINEERING, CHEMICAL Process Safety and Environmental Protection Pub Date : 2024-09-06 DOI:10.1016/j.psep.2024.08.134
{"title":"Kinetics study on inhibiting battery thermal runaway using an inorganic phase change material with a super high thermochemical storage capacity","authors":"","doi":"10.1016/j.psep.2024.08.134","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-ion batteries are susceptible to fires and explosions due to thermal runaway, a serious safety hazard. This study explores the potential of using hydrated inorganic salt (TCM40) composite phase change materials to prevent thermal runaway in battery packs. TCM40 composites stand out due to their exceptional thermochemical heat storage capacity, which allows them to effectively absorb excess heat during runaway events. The research investigates how thermal conductivity, thermal storage capacity, and cell spacing influence the propagation of thermal runaway. The findings demonstrate that TCM40 composites, with a thermal storage density exceeding 1000 kJ/kg, are significantly more effective in preventing thermal runaway compared to traditional latent heat storage phase change materials with lower capacities. To gain a comprehensive understanding of thermal runaway mitigation, a combined thermal management model was developed. This model integrates a battery thermal runaway model with a kinetic model describing the decomposition of TCM40 composites. The analysis reveals that the high heat absorption capability of TCM40 composites minimizes heat transfer to neighboring cells during thermal runaway. Furthermore, the model provides valuable insights into the synergistic effects of thermal conductivity and heat storage capacity on runaway propagation. This knowledge can be directly applied to design safer battery packs, even for compact configurations where cell spacing is less than 2 mm. This study offers significant advancements in both thermal protection materials and design strategies for lithium-ion battery packs. These advancements have the potential to significantly improve battery system safety and minimize the risk of explosions.</p></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0957582024011145/pdfft?md5=ad0c48c6c4d7f1fe48507bda760f631d&pid=1-s2.0-S0957582024011145-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582024011145","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries are susceptible to fires and explosions due to thermal runaway, a serious safety hazard. This study explores the potential of using hydrated inorganic salt (TCM40) composite phase change materials to prevent thermal runaway in battery packs. TCM40 composites stand out due to their exceptional thermochemical heat storage capacity, which allows them to effectively absorb excess heat during runaway events. The research investigates how thermal conductivity, thermal storage capacity, and cell spacing influence the propagation of thermal runaway. The findings demonstrate that TCM40 composites, with a thermal storage density exceeding 1000 kJ/kg, are significantly more effective in preventing thermal runaway compared to traditional latent heat storage phase change materials with lower capacities. To gain a comprehensive understanding of thermal runaway mitigation, a combined thermal management model was developed. This model integrates a battery thermal runaway model with a kinetic model describing the decomposition of TCM40 composites. The analysis reveals that the high heat absorption capability of TCM40 composites minimizes heat transfer to neighboring cells during thermal runaway. Furthermore, the model provides valuable insights into the synergistic effects of thermal conductivity and heat storage capacity on runaway propagation. This knowledge can be directly applied to design safer battery packs, even for compact configurations where cell spacing is less than 2 mm. This study offers significant advancements in both thermal protection materials and design strategies for lithium-ion battery packs. These advancements have the potential to significantly improve battery system safety and minimize the risk of explosions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用具有超高热化学储存能力的无机相变材料抑制电池热失控的动力学研究
锂离子电池容易因热失控而引发火灾和爆炸,这是一个严重的安全隐患。本研究探讨了使用水合无机盐(TCM40)复合相变材料防止电池组热失控的潜力。TCM40 复合材料因其卓越的热化学储热能力而脱颖而出,能够在失控事件中有效吸收多余热量。研究调查了热导率、蓄热能力和电池间距如何影响热失控的传播。研究结果表明,与容量较低的传统潜热存储相变材料相比,热存储密度超过 1000 kJ/kg 的 TCM40 复合材料能更有效地防止热失控。为了全面了解热失控缓解措施,我们开发了一个综合热管理模型。该模型集成了电池热失控模型和描述 TCM40 复合材料分解的动力学模型。分析表明,TCM40 复合材料的高吸热能力可在热失控期间最大限度地减少向邻近电池的热传递。此外,该模型还为了解热导率和蓄热能力对热失控传播的协同效应提供了宝贵的见解。这些知识可直接用于设计更安全的电池组,即使是电池间距小于 2 毫米的紧凑型配置也不例外。这项研究在锂离子电池组的热保护材料和设计策略方面都取得了重大进展。这些进步有可能大大提高电池系统的安全性,并将爆炸风险降至最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Process Safety and Environmental Protection
Process Safety and Environmental Protection 环境科学-工程:化工
CiteScore
11.40
自引率
15.40%
发文量
929
审稿时长
8.0 months
期刊介绍: The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice. PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers. PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.
期刊最新文献
An avalanche transistor-based Marx circuit pulse generator with sub-nanosecond, high frequency and high-voltage for pathogenic Escherichia coli ablation Fabrication of heterogeneous catalyst for production of biodiesel form municipal sludge Soil utilization analysis of synergistic pyrolysis products of flue gas desulfurization gypsum and biomass Dispersion and explosion characteristics of multi-phase fuel with different charge structure Optimizing multivariate alarm systems: A study on joint false alarm rate, and joint missed alarm rate using linear programming technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1