Fractional whale driving training-based optimization enabled transfer learning for detecting autism spectrum disorder

IF 2.6 4区 生物学 Q2 BIOLOGY Computational Biology and Chemistry Pub Date : 2024-08-30 DOI:10.1016/j.compbiolchem.2024.108200
Sriramakrishnan GV , P. Mano Paul , Hemachandra Gudimindla , Venubabu Rachapudi
{"title":"Fractional whale driving training-based optimization enabled transfer learning for detecting autism spectrum disorder","authors":"Sriramakrishnan GV ,&nbsp;P. Mano Paul ,&nbsp;Hemachandra Gudimindla ,&nbsp;Venubabu Rachapudi","doi":"10.1016/j.compbiolchem.2024.108200","DOIUrl":null,"url":null,"abstract":"<div><p>Autism Spectrum Disorder (ASD) is a neurological illness that degrades communication and interaction among others. Autism can be detected at any stage. Early detection of ASD is important in preventing the communication, interaction and behavioral outcomes of individuals. Hence, this research introduced the Fractional Whale-driving Driving Training-based Based Optimization with Convolutional Neural Network-based Transfer learning (FWDTBO-CNN_TL) for identifying ASD. Here, the FWDTBO is modelled by the incorporation of Fractional calculus (FC), Whale optimization algorithm (WOA) and Driving Training-based Optimization (DTBO) that trains the hyperparameters of CNN-TL. Moreover, the Convolutional Neural Networks (CNN) utilize the hyperparameters from trained models, like Alex Net and Shuffle Net in such a way that the CNN-TL is designed. To improve the detection efficiency, the nub region was extracted and carried out with the functional connectivity-based Whale Driving Training Optimization (WDTBO) algorithm. Moreover, the TL is tuned by the FWDTBO algorithm. The result reveals that the ASD detection technique, FWDTBO-CNN-TL acquired 90.7 % accuracy, 95.4 % sensitivity, 93.7 % specificity and 93 % f-measure with the ABIDE-II dataset.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108200"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001889","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Autism Spectrum Disorder (ASD) is a neurological illness that degrades communication and interaction among others. Autism can be detected at any stage. Early detection of ASD is important in preventing the communication, interaction and behavioral outcomes of individuals. Hence, this research introduced the Fractional Whale-driving Driving Training-based Based Optimization with Convolutional Neural Network-based Transfer learning (FWDTBO-CNN_TL) for identifying ASD. Here, the FWDTBO is modelled by the incorporation of Fractional calculus (FC), Whale optimization algorithm (WOA) and Driving Training-based Optimization (DTBO) that trains the hyperparameters of CNN-TL. Moreover, the Convolutional Neural Networks (CNN) utilize the hyperparameters from trained models, like Alex Net and Shuffle Net in such a way that the CNN-TL is designed. To improve the detection efficiency, the nub region was extracted and carried out with the functional connectivity-based Whale Driving Training Optimization (WDTBO) algorithm. Moreover, the TL is tuned by the FWDTBO algorithm. The result reveals that the ASD detection technique, FWDTBO-CNN-TL acquired 90.7 % accuracy, 95.4 % sensitivity, 93.7 % specificity and 93 % f-measure with the ABIDE-II dataset.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分鲸驱动训练的优化迁移学习用于检测自闭症谱系障碍
自闭症谱系障碍(ASD)是一种神经系统疾病,会降低交流和互动能力。自闭症可在任何阶段被发现。早期发现自闭症对预防个体的交流、互动和行为后果非常重要。因此,本研究引入了基于卷积神经网络迁移学习的分鲸驾驶训练优化(FWDTBO-CN_TL)来识别自闭症。在这里,FWDTBO 是通过结合分数微积分(FC)、鲸鱼优化算法(WOA)和基于驾驶训练的优化(DTBO)来训练 CNN-TL 的超参数。此外,卷积神经网络(CNN)利用经过训练的模型(如 Alex Net 和 Shuffle Net)的超参数设计了 CNN-TL。为了提高检测效率,使用基于功能连接的鲸鱼驱动训练优化(WDTBO)算法提取并执行了 nub 区域。此外,还利用 FWDTBO 算法对 TL 进行了调整。结果表明,FWDTBO-CNN-TL ASD 检测技术在 ABIDE-II 数据集上获得了 90.7 % 的准确率、95.4 % 的灵敏度、93.7 % 的特异性和 93 % 的 f-measure。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Biology and Chemistry
Computational Biology and Chemistry 生物-计算机:跨学科应用
CiteScore
6.10
自引率
3.20%
发文量
142
审稿时长
24 days
期刊介绍: Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered. Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered. Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.
期刊最新文献
scSFCL:Deep clustering of scRNA-seq data with subspace feature confidence learning A structure-based approach to discover a potential isomerase Pin1 inhibitor for cancer therapy using computational simulation and biological studies A multi-perspective deep learning framework for enhancer characterization and identification Vector embeddings by sequence similarity and context for improved compression, similarity search, clustering, organization, and manipulation of cDNA libraries MuSE: A deep learning model based on multi-feature fusion for super-enhancer prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1