Mahya G.Z. Hashemi , Ehsan Jalilvand , Hamed Alemohammad , Pang-Ning Tan , Narendra N. Das
{"title":"Review of synthetic aperture radar with deep learning in agricultural applications","authors":"Mahya G.Z. Hashemi , Ehsan Jalilvand , Hamed Alemohammad , Pang-Ning Tan , Narendra N. Das","doi":"10.1016/j.isprsjprs.2024.08.018","DOIUrl":null,"url":null,"abstract":"<div><p>Synthetic Aperture Radar (SAR) observations, valued for their consistent acquisition schedule and not being affected by cloud cover and variations between day and night, have become extensively utilized in a range of agricultural applications. The advent of deep learning allows for the capture of salient features from SAR observations. This is accomplished through discerning both spatial and temporal relationships within SAR data. This study reviews the current state of the art in the use of SAR with deep learning for crop classification/mapping, monitoring and yield estimation applications and the potential of leveraging both for the detection of agricultural management practices.</p><p>This review introduces the principles of SAR and its applications in agriculture, highlighting current limitations and challenges. It explores deep learning techniques as a solution to mitigate these issues and enhance the capability of SAR for agricultural applications. The review covers various aspects of SAR observables, methodologies for the fusion of optical and SAR data, common and emerging deep learning architectures, data augmentation techniques, validation and testing methods, and open-source reference datasets, all aimed at enhancing the precision and utility of SAR with deep learning for agricultural applications.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 20-49"},"PeriodicalIF":10.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003290","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic Aperture Radar (SAR) observations, valued for their consistent acquisition schedule and not being affected by cloud cover and variations between day and night, have become extensively utilized in a range of agricultural applications. The advent of deep learning allows for the capture of salient features from SAR observations. This is accomplished through discerning both spatial and temporal relationships within SAR data. This study reviews the current state of the art in the use of SAR with deep learning for crop classification/mapping, monitoring and yield estimation applications and the potential of leveraging both for the detection of agricultural management practices.
This review introduces the principles of SAR and its applications in agriculture, highlighting current limitations and challenges. It explores deep learning techniques as a solution to mitigate these issues and enhance the capability of SAR for agricultural applications. The review covers various aspects of SAR observables, methodologies for the fusion of optical and SAR data, common and emerging deep learning architectures, data augmentation techniques, validation and testing methods, and open-source reference datasets, all aimed at enhancing the precision and utility of SAR with deep learning for agricultural applications.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.