Consumer segmentation with large language models

IF 11 1区 管理学 Q1 BUSINESS Journal of Retailing and Consumer Services Pub Date : 2024-09-09 DOI:10.1016/j.jretconser.2024.104078
Yinan Li , Ying Liu , Muran Yu
{"title":"Consumer segmentation with large language models","authors":"Yinan Li ,&nbsp;Ying Liu ,&nbsp;Muran Yu","doi":"10.1016/j.jretconser.2024.104078","DOIUrl":null,"url":null,"abstract":"<div><p>Consumer segmentation is vital for companies to customize their offerings effectively. Our study explores the application of Large Language Models (LLMs) in marketing research for consumer segmentation. We developed a workflow leveraging LLMs to perform clustering analysis based on consumer survey data, with a focus on text-based multiple-choice and open-ended questions. Firstly, we employed a LLMs model to embed text for clustering, demonstrating that LLMs enhance clustering accuracy over traditional models. Secondly, we created persona chatbots using LLMs, which achieved over 89% accuracy in simulating consumer preferences. Our findings underscore the potential of our LLMs framework in marketing research.</p></div>","PeriodicalId":48399,"journal":{"name":"Journal of Retailing and Consumer Services","volume":"82 ","pages":"Article 104078"},"PeriodicalIF":11.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Retailing and Consumer Services","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969698924003746","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

Abstract

Consumer segmentation is vital for companies to customize their offerings effectively. Our study explores the application of Large Language Models (LLMs) in marketing research for consumer segmentation. We developed a workflow leveraging LLMs to perform clustering analysis based on consumer survey data, with a focus on text-based multiple-choice and open-ended questions. Firstly, we employed a LLMs model to embed text for clustering, demonstrating that LLMs enhance clustering accuracy over traditional models. Secondly, we created persona chatbots using LLMs, which achieved over 89% accuracy in simulating consumer preferences. Our findings underscore the potential of our LLMs framework in marketing research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用大型语言模型进行消费者细分
消费者细分对于企业有效定制产品至关重要。我们的研究探讨了大语言模型(LLMs)在消费者细分营销研究中的应用。我们开发了一个工作流程,利用 LLMs 对消费者调查数据进行聚类分析,重点是基于文本的选择题和开放式问题。首先,我们使用 LLMs 模型嵌入文本进行聚类,证明 LLMs 比传统模型提高了聚类的准确性。其次,我们使用 LLMs 创建了角色聊天机器人,其模拟消费者偏好的准确率超过 89%。我们的研究结果凸显了 LLMs 框架在营销研究中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
20.40
自引率
14.40%
发文量
340
审稿时长
20 days
期刊介绍: The Journal of Retailing and Consumer Services is a prominent publication that serves as a platform for international and interdisciplinary research and discussions in the constantly evolving fields of retailing and services studies. With a specific emphasis on consumer behavior and policy and managerial decisions, the journal aims to foster contributions from academics encompassing diverse disciplines. The primary areas covered by the journal are: Retailing and the sale of goods The provision of consumer services, including transportation, tourism, and leisure.
期刊最新文献
Psychological needs, brand attachment, and passion for themed-restaurant brands: A generational perspective Interactive product presentation in an immersive environment: The influence of functional control on hedonic aspects Metaverse friends with social benefits: Effects of social identity on the intention to purchase virtual products through site attachment, user engagement, and public self-consciousness Metaverse platform attributes and customer experience measurement Reputation vs. price: Sequential recommendations based on cue diagnosticity theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1