Energy absorption of Kresling pattern thin-walled structures with pre-folded patterns and graded stiffness

IF 3.4 3区 工程技术 Q1 MECHANICS International Journal of Solids and Structures Pub Date : 2024-09-06 DOI:10.1016/j.ijsolstr.2024.113057
{"title":"Energy absorption of Kresling pattern thin-walled structures with pre-folded patterns and graded stiffness","authors":"","doi":"10.1016/j.ijsolstr.2024.113057","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional thin-walled structures are widely employed in several energy-absorbing engineering fields, and origami patterns inspire novel structures with unique functionalities in this area. In this study, we explore energy-absorbing effects of origami-inspired thin-walled structures from perspective of the predicted stability of the Kresling origami. Our research utilizes finite element analysis and experimental validation to evaluate and contrast the energy-absorbing effects of the Kresling origami-inspired thin-walled structures (KOI-TWSs) with a traditional hexagonal thin-walled structure (HTWS). The results indicate that introducing the Kresling origami pattern into the thin-walled structure to obtain geometric defects (pre-folded pattern) and graded stiffness, and their effects are reflected in improving the buckling deformation stability or reducing the initial peak force. These effects depend on the predicted stability of the Kresling origami and are intuitively reflected in the geometric parameters. On the other hand, the reusability of materials is worth considering for improving the energy absorption of the thin-walled structures. These works provide new contents and perspectives for the KOI-TWSs.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324004165","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional thin-walled structures are widely employed in several energy-absorbing engineering fields, and origami patterns inspire novel structures with unique functionalities in this area. In this study, we explore energy-absorbing effects of origami-inspired thin-walled structures from perspective of the predicted stability of the Kresling origami. Our research utilizes finite element analysis and experimental validation to evaluate and contrast the energy-absorbing effects of the Kresling origami-inspired thin-walled structures (KOI-TWSs) with a traditional hexagonal thin-walled structure (HTWS). The results indicate that introducing the Kresling origami pattern into the thin-walled structure to obtain geometric defects (pre-folded pattern) and graded stiffness, and their effects are reflected in improving the buckling deformation stability or reducing the initial peak force. These effects depend on the predicted stability of the Kresling origami and are intuitively reflected in the geometric parameters. On the other hand, the reusability of materials is worth considering for improving the energy absorption of the thin-walled structures. These works provide new contents and perspectives for the KOI-TWSs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有预折叠图案和分级刚度的克瑞斯林图案薄壁结构的能量吸收
传统的薄壁结构被广泛应用于多个吸能工程领域,而折纸图案则激发了该领域具有独特功能的新型结构。在本研究中,我们从 Kresling 折纸的预测稳定性角度出发,探讨了折纸启发薄壁结构的吸能效果。我们的研究利用有限元分析和实验验证来评估和对比克瑞斯林折纸启发薄壁结构(KOI-TWSs)与传统六边形薄壁结构(HTWS)的能量吸收效果。结果表明,在薄壁结构中引入克瑞斯林折纸图案可获得几何缺陷(预折叠图案)和分级刚度,其效果体现在提高屈曲变形稳定性或降低初始峰值力上。这些效果取决于克瑞斯林折纸的预测稳定性,并直观地反映在几何参数中。另一方面,材料的可重复使用性也值得考虑,以提高薄壁结构的能量吸收能力。这些工作为 KOI-TWS 提供了新的内容和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
8.30%
发文量
405
审稿时长
70 days
期刊介绍: The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.
期刊最新文献
Analyzing creep-recovery behavior of tropical Entandrophragma cylindricum wood: Traditional and fractional modeling methods Advanced finite element modeling methods for tensile and bending analysis of arresting gear cables Free vibration of electroelastic thin-walled structures under static load Design and sound absorption analysis of labyrinthine acoustic metamaterials based on fractal theory Metabarriers for mitigating traffic-induced surface waves: Mechanism dependence on buried arrangements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1