Engineering Pt–CeO2 interfaces for reverse water-gas shift (RWGS) reaction†

Kauê G. G. dos Santos, Alisson S. Thill, Livia P. Matte, Gustavo Z. Girotto, Mateus V. Costa, Denise R. Bohn, Fernanda Poletto and Fabiano Bernardi
{"title":"Engineering Pt–CeO2 interfaces for reverse water-gas shift (RWGS) reaction†","authors":"Kauê G. G. dos Santos, Alisson S. Thill, Livia P. Matte, Gustavo Z. Girotto, Mateus V. Costa, Denise R. Bohn, Fernanda Poletto and Fabiano Bernardi","doi":"10.1039/D4LF00064A","DOIUrl":null,"url":null,"abstract":"<p >Nowadays, Pt–CeO<small><sub>2</sub></small> interfaces are very popular in many applications. In particular, this system is widely used in catalysis for the reverse water gas-shift (RWGS) reaction aiming to stop the dangerous advancement of the global warming effect. Nevertheless, some complex atomic events occurring at this interface are still unclear. In this work, superhydrophobic Pt–CeO<small><sub>2</sub></small> nanoparticles were used in the RWGS reaction aiming to shift the equilibrium of the RWGS reaction towards the formation of CO. It was demonstrated that this sample presents a highly reducible CeO<small><sub>2</sub></small> surface and an easy tunability of the O vacancy population, which is the main active site of metal oxides in catalysis. Consequently, the Pt–CeO<small><sub>2</sub></small> superhydrophobic sample presents improved performance towards CO formation in the RWGS reaction. During the RWGS reaction, the Pt nanoparticles suffer from the strong metal–support interaction (SMSI) effect that may hinder the catalytically active sites but, even so, the superhydrophobic Pt–CeO<small><sub>2</sub></small> nanoparticles are active in the RWGS reaction. It opens new frontiers in the engineering of active superhydrophobic Pt–CeO<small><sub>2</sub></small> interfaces with tunable O vacancy population.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 5","pages":" 992-1000"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lf/d4lf00064a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lf/d4lf00064a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, Pt–CeO2 interfaces are very popular in many applications. In particular, this system is widely used in catalysis for the reverse water gas-shift (RWGS) reaction aiming to stop the dangerous advancement of the global warming effect. Nevertheless, some complex atomic events occurring at this interface are still unclear. In this work, superhydrophobic Pt–CeO2 nanoparticles were used in the RWGS reaction aiming to shift the equilibrium of the RWGS reaction towards the formation of CO. It was demonstrated that this sample presents a highly reducible CeO2 surface and an easy tunability of the O vacancy population, which is the main active site of metal oxides in catalysis. Consequently, the Pt–CeO2 superhydrophobic sample presents improved performance towards CO formation in the RWGS reaction. During the RWGS reaction, the Pt nanoparticles suffer from the strong metal–support interaction (SMSI) effect that may hinder the catalytically active sites but, even so, the superhydrophobic Pt–CeO2 nanoparticles are active in the RWGS reaction. It opens new frontiers in the engineering of active superhydrophobic Pt–CeO2 interfaces with tunable O vacancy population.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于水-气反向转换(RWGS)反应的铂-铈工程界面†
如今,Pt-CeO2 界面在许多应用领域都非常受欢迎。特别是,该体系被广泛应用于反向水气转移(RWGS)反应的催化,旨在阻止全球变暖效应的危险发展。然而,在这一界面上发生的一些复杂的原子事件仍不清楚。在这项研究中,超疏水性铂铈纳米粒子被用于 RWGS 反应,目的是将 RWGS 反应的平衡转向 CO 的形成。研究表明,该样品具有高度还原性的 CeO2 表面,且 O 空位群易于调整,而 O 空位群是金属氧化物催化反应中的主要活性位点。因此,Pt-CeO2 超疏水样品在 RWGS 反应中生成 CO 的性能得到了改善。在 RWGS 反应过程中,铂纳米颗粒受到强烈的金属-支撑相互作用(SMSI)效应的影响,可能会阻碍催化活性位点,但即便如此,超疏水性 Pt-CeO2 纳米颗粒在 RWGS 反应中仍具有活性。这为具有可调 O 空位群的活性超疏水 Pt-CeO2 界面工程开辟了新的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Solid-supported polymer-lipid hybrid membrane for bioelectrochemistry of a membrane redox enzyme. Back cover The first year of RSC Applied Interfaces: a retrospective A phosphite derivative with stronger HF elimination ability as an additive for Li-rich based lithium-ion batteries at elevated temperatures† Multilevel azopolymer patterning from digital holographic lithography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1