A thiourea-bridged 99mTc(CO)3-dipicolylamine-2-nitroimidazole complex for targeting tumor hypoxia: Utilizing metabolizable thiourea-bridge to improve pharmacokinetics
Sweety Mittal, Chandan Kumar, Laxmi Jha, Madhava B. Mallia
{"title":"A thiourea-bridged 99mTc(CO)3-dipicolylamine-2-nitroimidazole complex for targeting tumor hypoxia: Utilizing metabolizable thiourea-bridge to improve pharmacokinetics","authors":"Sweety Mittal, Chandan Kumar, Laxmi Jha, Madhava B. Mallia","doi":"10.1002/ddr.22258","DOIUrl":null,"url":null,"abstract":"<p>The 2-nitroimidazole based <sup>99m</sup>Tc-radiopharmaceuticals are widely explored for imaging tumor hypoxia. Radiopharmaceuticals for targeting hypoxia are often lipophilic and therefore, show significant uptake in liver and other vital organs. In this context, lipophilic radiopharmaceuticals with design features enabling faster clearance from liver may be more desirable. A dipicolylamine-NCS bifunctional chelator that could generate a thiourea-bridge up on conjugation to primary amine bearing molecule was used to synthesize a 2-nitroimidazole-dipicolyl amine ligand for radiolabeling with <sup>99m</sup>Tc(CO)<sub>3</sub> core. Corresponding Re(CO)<sub>3</sub>-analogue was prepared to establish the structure of 2-nitroimidazole-<sup>99m</sup>Tc(CO)<sub>3</sub> complex prepared in trace level. The 2-nitroimidazole-<sup>99m</sup>Tc(CO)<sub>3</sub> complex showed a hypoxic to normoxic ratio of ~2.5 in CHO cells at 3 h. In vivo, the complex showed accumulation and retention in tumor with high tumor to blood and tumor to muscle ratio. The study demonstrated the utility of metabolizable thiourea-bridge in 2-nitroimidazole-<sup>99m</sup>Tc(CO)<sub>3</sub> complex in inducing faster clearance of the radiotracer from liver. The dipicolylamine-NCS bifunctional chelator reported herein can also be used for radiolabeling other class of target specific molecules with <sup>99m</sup>Tc(CO)<sub>3</sub> core.</p>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ddr.22258","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.22258","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The 2-nitroimidazole based 99mTc-radiopharmaceuticals are widely explored for imaging tumor hypoxia. Radiopharmaceuticals for targeting hypoxia are often lipophilic and therefore, show significant uptake in liver and other vital organs. In this context, lipophilic radiopharmaceuticals with design features enabling faster clearance from liver may be more desirable. A dipicolylamine-NCS bifunctional chelator that could generate a thiourea-bridge up on conjugation to primary amine bearing molecule was used to synthesize a 2-nitroimidazole-dipicolyl amine ligand for radiolabeling with 99mTc(CO)3 core. Corresponding Re(CO)3-analogue was prepared to establish the structure of 2-nitroimidazole-99mTc(CO)3 complex prepared in trace level. The 2-nitroimidazole-99mTc(CO)3 complex showed a hypoxic to normoxic ratio of ~2.5 in CHO cells at 3 h. In vivo, the complex showed accumulation and retention in tumor with high tumor to blood and tumor to muscle ratio. The study demonstrated the utility of metabolizable thiourea-bridge in 2-nitroimidazole-99mTc(CO)3 complex in inducing faster clearance of the radiotracer from liver. The dipicolylamine-NCS bifunctional chelator reported herein can also be used for radiolabeling other class of target specific molecules with 99mTc(CO)3 core.
期刊介绍:
Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.