Novel Benzosuberone/Indanone-Linked Thiazoles as Small-Molecule SARS-CoV-2 Main Protease Inhibitors.

IF 3.5 4区 医学 Q2 CHEMISTRY, MEDICINAL Drug Development Research Pub Date : 2025-04-01 DOI:10.1002/ddr.70081
Thoraya A Farghaly, Elham N Bifari, Mariam A Al-Sheikh, Afaf Y Khormi, Hanadi Y Medrasi, Jihan Qurban, Hanan Gaber Abdulwahab
{"title":"Novel Benzosuberone/Indanone-Linked Thiazoles as Small-Molecule SARS-CoV-2 Main Protease Inhibitors.","authors":"Thoraya A Farghaly, Elham N Bifari, Mariam A Al-Sheikh, Afaf Y Khormi, Hanadi Y Medrasi, Jihan Qurban, Hanan Gaber Abdulwahab","doi":"10.1002/ddr.70081","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, novel benzosuberone/indanone-linked thiazoles were designed and synthesized as small-molecule SARS-CoV-2 Main protease (M<sup>pro</sup>) inhibitors with potential anti-COVID activity. All thiazole derivatives were synthesized from the reaction of thiosemicarbazone derivatives with α-halocarbonyl derivatives. The structures of novel benzosuberone/indanone-linked thiazoles were confirmed based on their spectral data. Thiazolyl-benzosuberone 9d and thiazolyl-indanone 14 were the most potent against M<sup>pro</sup> displaying one-digit IC<sub>50</sub> values of 5.94 and 8.47 µM, respectively, compared to ritonavir (IC<sub>50</sub> = 2.4 µM). Moreover, antiviral assay revealed the ability of compounds 9d and 14 to inhibit the replication of SARS-CoV-2 in Vero cells at EC<sub>50</sub> values of 9.33 and 28.75 µM, respectively, relative to ritonavir (EC<sub>50</sub> = 1.72 µM). Cytotoxicity assay in Vero cells was also conducted. 9d and 14 showed CC<sub>50</sub> values of 289.63 and 229.42 µM and SI of 31.0 and 7.9, respectively. In addition, a docking study revealed proper orientation and well-fitting of title compounds into the binding pocket of SARS-CoV-2 M<sup>pro</sup>.</p>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"86 2","pages":"e70081"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ddr.70081","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, novel benzosuberone/indanone-linked thiazoles were designed and synthesized as small-molecule SARS-CoV-2 Main protease (Mpro) inhibitors with potential anti-COVID activity. All thiazole derivatives were synthesized from the reaction of thiosemicarbazone derivatives with α-halocarbonyl derivatives. The structures of novel benzosuberone/indanone-linked thiazoles were confirmed based on their spectral data. Thiazolyl-benzosuberone 9d and thiazolyl-indanone 14 were the most potent against Mpro displaying one-digit IC50 values of 5.94 and 8.47 µM, respectively, compared to ritonavir (IC50 = 2.4 µM). Moreover, antiviral assay revealed the ability of compounds 9d and 14 to inhibit the replication of SARS-CoV-2 in Vero cells at EC50 values of 9.33 and 28.75 µM, respectively, relative to ritonavir (EC50 = 1.72 µM). Cytotoxicity assay in Vero cells was also conducted. 9d and 14 showed CC50 values of 289.63 and 229.42 µM and SI of 31.0 and 7.9, respectively. In addition, a docking study revealed proper orientation and well-fitting of title compounds into the binding pocket of SARS-CoV-2 Mpro.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
2.60%
发文量
104
审稿时长
6-12 weeks
期刊介绍: Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.
期刊最新文献
Novel Benzosuberone/Indanone-Linked Thiazoles as Small-Molecule SARS-CoV-2 Main Protease Inhibitors. Panaxadiol Attenuates Brain Damage by Inhibiting Ferroptosis in a Rat Model of Cerebral Hemorrhage. A Novel Topical Compound Gel Loading Minoxidil and Tofacitinib for Treatment of Alopecia Areata: Formulation, Characterization, and In Vitro/In Vivo Evaluation Innovative Multitarget Organoselenium Hybrids With Apoptotic and Anti-Inflammatory Properties Acting as JAK1/STAT3 Suppressors Strategies for the Discovery and Design of Tissue Plasminogen Activators: Insights Into Bioengineering Objectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1