Point Cloud Registration in Laparoscopic Liver Surgery Using Keypoint Correspondence Registration Network

Yirui Zhang;Yanni Zou;Peter X. Liu
{"title":"Point Cloud Registration in Laparoscopic Liver Surgery Using Keypoint Correspondence Registration Network","authors":"Yirui Zhang;Yanni Zou;Peter X. Liu","doi":"10.1109/TMI.2024.3457228","DOIUrl":null,"url":null,"abstract":"Laparoscopic liver surgery is a newly developed minimally invasive technique and represents an inevitable trend in the future development of surgical methods. By using augmented reality (AR) technology to overlay preoperative CT models with intraoperative laparoscopic videos, surgeons can accurately locate blood vessels and tumors, significantly enhancing the safety and precision of surgeries. Point cloud registration technology is key to achieving this effect. However, there are two major challenges in registering the CT model with the point cloud surface reconstructed from intraoperative laparoscopy. First, the surface features of the organ are not prominent. Second, due to the limited field of view of the laparoscope, the reconstructed surface typically represents only a very small portion of the entire organ. To address these issues, this paper proposes the keypoint correspondence registration network (KCR-Net). This network first uses the neighborhood feature fusion module (NFFM) to aggregate and interact features from different regions and structures within a pair of point clouds to obtain comprehensive feature representations. Then, through correspondence generation, it directly generates keypoints and their corresponding weights, with keypoints located in the common structures of the point clouds to be registered, and corresponding weights learned automatically by the network. This approach enables accurate point cloud registration even under conditions of extremely low overlap. Experiments conducted on the ModelNet40, 3Dircadb, DePoLL demonstrate that our method achieves excellent registration accuracy and is capable of meeting the requirements of real-world scenarios.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"749-760"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10672536/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Laparoscopic liver surgery is a newly developed minimally invasive technique and represents an inevitable trend in the future development of surgical methods. By using augmented reality (AR) technology to overlay preoperative CT models with intraoperative laparoscopic videos, surgeons can accurately locate blood vessels and tumors, significantly enhancing the safety and precision of surgeries. Point cloud registration technology is key to achieving this effect. However, there are two major challenges in registering the CT model with the point cloud surface reconstructed from intraoperative laparoscopy. First, the surface features of the organ are not prominent. Second, due to the limited field of view of the laparoscope, the reconstructed surface typically represents only a very small portion of the entire organ. To address these issues, this paper proposes the keypoint correspondence registration network (KCR-Net). This network first uses the neighborhood feature fusion module (NFFM) to aggregate and interact features from different regions and structures within a pair of point clouds to obtain comprehensive feature representations. Then, through correspondence generation, it directly generates keypoints and their corresponding weights, with keypoints located in the common structures of the point clouds to be registered, and corresponding weights learned automatically by the network. This approach enables accurate point cloud registration even under conditions of extremely low overlap. Experiments conducted on the ModelNet40, 3Dircadb, DePoLL demonstrate that our method achieves excellent registration accuracy and is capable of meeting the requirements of real-world scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用关键点对应注册网络在腹腔镜肝脏手术中进行点云注册
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Table of Contents Table of Contents Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario. FAMF-Net: Feature Alignment Mutual Attention Fusion with Region Awareness for Breast Cancer Diagnosis via Imbalanced Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1