Chiral TeraHertz Surface Plasmonics

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Photonics Pub Date : 2024-09-11 DOI:10.1021/acsphotonics.4c01076
Ian Aupiais, Romain Grasset, Dmitri Daineka, Javier Briatico, Luca Perfetti, Jean-Paul Hugonin, Jean-Jacques Greffet, Yannis Laplace
{"title":"Chiral TeraHertz Surface Plasmonics","authors":"Ian Aupiais, Romain Grasset, Dmitri Daineka, Javier Briatico, Luca Perfetti, Jean-Paul Hugonin, Jean-Jacques Greffet, Yannis Laplace","doi":"10.1021/acsphotonics.4c01076","DOIUrl":null,"url":null,"abstract":"Chiral engineering of TeraHertz (THz) light fields and the use of the handedness of light in THz light–matter interactions promise many novel opportunities for the advanced sensing and control of matter in this frequency range. Unlike previously explored methods, this is achieved here by leveraging the chiral properties of highly confined THz surface plasmon modes. More specifically, we design ultrasmall surface plasmonic-based THz cavities and THz metasurfaces that display significant and adjustable chiral behavior under modest magnetic fields (<i>B</i> ≤ 500 mT). For such a prototypical example of a non-hermitian and dispersive photonic system, we demonstrate the capacity to magnetic field-tune both the poles and zeros of cavity resonances, the two fundamental parameters governing their resonance properties. Alongside the observed handedness-dependent cavity frequencies, this highlights the remarkable ability to engineer chiral and tunable radiative couplings for THz resonators and metasurfaces. The extensive tunability offered by the surface plasmonic approach paves the way for the development of agile and multifunctional THz metasurfaces as well as the realization of ultrastrong chiral light–matter interactions at low energy in matter with potential far-reaching applications for the design of material properties.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01076","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chiral engineering of TeraHertz (THz) light fields and the use of the handedness of light in THz light–matter interactions promise many novel opportunities for the advanced sensing and control of matter in this frequency range. Unlike previously explored methods, this is achieved here by leveraging the chiral properties of highly confined THz surface plasmon modes. More specifically, we design ultrasmall surface plasmonic-based THz cavities and THz metasurfaces that display significant and adjustable chiral behavior under modest magnetic fields (B ≤ 500 mT). For such a prototypical example of a non-hermitian and dispersive photonic system, we demonstrate the capacity to magnetic field-tune both the poles and zeros of cavity resonances, the two fundamental parameters governing their resonance properties. Alongside the observed handedness-dependent cavity frequencies, this highlights the remarkable ability to engineer chiral and tunable radiative couplings for THz resonators and metasurfaces. The extensive tunability offered by the surface plasmonic approach paves the way for the development of agile and multifunctional THz metasurfaces as well as the realization of ultrastrong chiral light–matter interactions at low energy in matter with potential far-reaching applications for the design of material properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
手性太赫兹表面等离子体学
太赫兹(THz)光场的手性工程以及在太赫兹光-物质相互作用中对光的手性的利用,为在这一频率范围内对物质进行先进传感和控制提供了许多新机会。与之前探索的方法不同,我们在此利用高度约束的太赫兹表面等离子体模式的手性特性来实现这一目标。更具体地说,我们设计了基于超小型表面等离子体的太赫兹空腔和太赫兹元表面,在适度磁场(B ≤ 500 mT)下显示出显著的可调手性。对于这样一个非全息和色散光子系统的典型例子,我们展示了对空腔共振的极点和零点进行磁场调节的能力,这两个基本参数制约着它们的共振特性。除了观察到与手性有关的空腔频率外,这还凸显了为太赫兹谐振器和元表面设计手性和可调辐射耦合的非凡能力。表面等离子体方法提供的广泛可调性为开发灵活、多功能的太赫兹元表面铺平了道路,也为在低能物质中实现超强手性光-物质相互作用铺平了道路,这对材料特性设计具有深远的潜在应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
期刊最新文献
Tensile-Strained GeSn Microbridge Lasers with Lithographically Controllable Emission Wavelengths Single-Base Resolution Photonic-Integrated Chips via Hybrid Dielectric–Metal Nanocavities for Ultrasensitive Multichannel Biosensing Plasmonic Hot Carrier Transfer: Direction and Distance Dependence in Nanoparticle-on-Mirror Systems Nanocavities for Molecular Optomechanics: Their Fundamental Description and Applications Epitaxial Engineering of FAPbBr3/FAPbBr3–xClx Heterojunctions for Sensitive X-ray and α-Particle Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1