4d–2p–4f Gradient Orbital Coupling Enables Tandem Catalysis for Simultaneous Abatement of N2O and CO on Atomically Dispersed Rh/CeO2 Catalyst

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-09-11 DOI:10.1021/acs.est.4c02277
Hao Liu, Shan Yang, Jinxing Mi, Chuanzhi Sun, Jianjun Chen, Junhua Li
{"title":"4d–2p–4f Gradient Orbital Coupling Enables Tandem Catalysis for Simultaneous Abatement of N2O and CO on Atomically Dispersed Rh/CeO2 Catalyst","authors":"Hao Liu, Shan Yang, Jinxing Mi, Chuanzhi Sun, Jianjun Chen, Junhua Li","doi":"10.1021/acs.est.4c02277","DOIUrl":null,"url":null,"abstract":"N<sub>2</sub>O and CO coexist in various industrial and mobile sources. The synergistic reaction of N<sub>2</sub>O and CO to generate N<sub>2</sub> and CO<sub>2</sub> has garnered significant research interest, but it remains extremely challenging. Herein, we constructed an atomically dispersed Rh-supported CeO<sub>2</sub> catalyst with asymmetric Rh–O–Ce sites through gradient Rh 4d–O 2p–Ce 4f orbital coupling. This design effectively regulates the 4f electron states of Ce and promotes the electron filling of the O 3π* antibonding orbital to facilitate N–O bond cleavage. Near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) reveals that CO reacts with the surface-adsorbed O* generated by N<sub>2</sub>O decomposition through self-tandem catalysis, accelerating the rate-limiting step in N<sub>2</sub>O decomposition and activating the synergistic reaction of N<sub>2</sub>O and CO at temperatures as low as 115 °C. This work can guide the development of high-performance catalysts using the strategy of high-order orbital hybridization combined with the tandem concept to achieve versatile catalytic applications.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"83 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c02277","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

N2O and CO coexist in various industrial and mobile sources. The synergistic reaction of N2O and CO to generate N2 and CO2 has garnered significant research interest, but it remains extremely challenging. Herein, we constructed an atomically dispersed Rh-supported CeO2 catalyst with asymmetric Rh–O–Ce sites through gradient Rh 4d–O 2p–Ce 4f orbital coupling. This design effectively regulates the 4f electron states of Ce and promotes the electron filling of the O 3π* antibonding orbital to facilitate N–O bond cleavage. Near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) reveals that CO reacts with the surface-adsorbed O* generated by N2O decomposition through self-tandem catalysis, accelerating the rate-limiting step in N2O decomposition and activating the synergistic reaction of N2O and CO at temperatures as low as 115 °C. This work can guide the development of high-performance catalysts using the strategy of high-order orbital hybridization combined with the tandem concept to achieve versatile catalytic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
4d-2p-4f 梯度轨道耦合可在原子分散的 Rh/CeO2 催化剂上串联催化同时减排 N2O 和 CO
一氧化二氮和一氧化碳共存于各种工业和移动污染源中。N2O 和 CO 协同反应生成 N2 和 CO2 已引起研究人员的极大兴趣,但这一研究仍极具挑战性。在此,我们通过梯度 Rh 4d-O 2p-Ce 4f 轨道耦合,构建了具有不对称 Rh-O-Ce 位点的原子分散 Rh-supported CeO2 催化剂。这种设计有效地调节了 Ce 的 4f 电子状态,促进了 O 3π* 反键轨道的电子填充,从而促进了 N-O 键的裂解。近常压 X 射线光电子能谱(NAP-XPS)显示,CO 通过自串联催化作用与 N2O 分解产生的表面吸附 O* 发生反应,加快了 N2O 分解的限速步骤,并在低至 115 ℃ 的温度下激活了 N2O 和 CO 的协同反应。这项工作可指导利用高阶轨道杂化策略结合串联概念开发高性能催化剂,以实现催化应用的多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Adapting Methods for Isolation and Enumeration of Microplastics to Quantify Tire Road Wear Particles with Confirmation by Pyrolysis GC–MS Optimizing Exposure Measures in Large-Scale Household Air Pollution Studies: Results from the Multicountry HAPIN Trial Network-Based Identification of Key Toxic Compounds in Airborne Chemical Exposome Celebrating the 2025 Winners of the Outstanding Achievements in Environmental Science & Technology Award and the James J. Morgan Early Career Award Safe Production of Rice (Oryza sativa L.) in Arsenic-Contaminated Soil: a Remedial Strategy using Micro-Nanostructured Bone Biochar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1