Machine-learning based subgroups of AL amyloidosis and cumulative incidence of mortality and end stage kidney disease

IF 10.1 1区 医学 Q1 HEMATOLOGY American Journal of Hematology Pub Date : 2024-09-11 DOI:10.1002/ajh.27472
Shankara K. Anand, Andrew Staron, Lisa M. Mendelson, Tracy Joshi, Natasha Burke, Vaishali Sanchorawala, Ashish Verma
{"title":"Machine-learning based subgroups of AL amyloidosis and cumulative incidence of mortality and end stage kidney disease","authors":"Shankara K. Anand,&nbsp;Andrew Staron,&nbsp;Lisa M. Mendelson,&nbsp;Tracy Joshi,&nbsp;Natasha Burke,&nbsp;Vaishali Sanchorawala,&nbsp;Ashish Verma","doi":"10.1002/ajh.27472","DOIUrl":null,"url":null,"abstract":"<p>Immunoglobulin light chain (AL) amyloidosis is a multisystem disease with varied treatment options and disease-related outcomes. Current staging systems rely on a limited number of cardiac, renal, and plasma cell dyscrasia biomarkers. To improve prognostication for all-cause mortality and end-stage kidney disease (ESKD), we applied unsupervised machine learning using a comprehensive set of clinical and laboratory parameters. Our study cohort comprised 2067 patients with newly diagnosed, biopsy-proven AL amyloidosis from the Boston University Amyloidosis Center. Variables included 31 clinical symptoms and 28 baseline laboratory values. Our clustering algorithm identified three subgroups of AL amyloidosis (low-risk, intermediate-risk, and high-risk) with distinct clinical phenotypes and median overall survival (OS) estimates of 6.1, 3.7, and 1.2 years, respectively. The 10-year adjusted cumulative incidences of all-cause mortality were 66.8% (95% CI 63.4–70.1), 75.4% (95% CI 72.1–78.6), and 90.6% (95% CI 87.4–93.3) for low, intermediate, and high-risk subgroups. The 10-year adjusted cumulative incidences of end-stage kidney disease (ESKD) were 20.4% (95% CI 6.1–24.5), 37.6% (95% CI 31.8–43.8), and 6.7% (95% CI 2.8–11.3) for low-risk, intermediate-risk, and high-risk subgroups. Finally, we trained a classifier for external validation with high cross-validation accuracy (85% [95% CI 83–86]) using a subset of easily obtainable clinical parameters. This marks an initial stride toward integrating precision medicine into risk stratification of AL amyloidosis for both all-cause mortality and ESKD.</p>","PeriodicalId":7724,"journal":{"name":"American Journal of Hematology","volume":"99 11","pages":"2140-2151"},"PeriodicalIF":10.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Hematology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ajh.27472","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Immunoglobulin light chain (AL) amyloidosis is a multisystem disease with varied treatment options and disease-related outcomes. Current staging systems rely on a limited number of cardiac, renal, and plasma cell dyscrasia biomarkers. To improve prognostication for all-cause mortality and end-stage kidney disease (ESKD), we applied unsupervised machine learning using a comprehensive set of clinical and laboratory parameters. Our study cohort comprised 2067 patients with newly diagnosed, biopsy-proven AL amyloidosis from the Boston University Amyloidosis Center. Variables included 31 clinical symptoms and 28 baseline laboratory values. Our clustering algorithm identified three subgroups of AL amyloidosis (low-risk, intermediate-risk, and high-risk) with distinct clinical phenotypes and median overall survival (OS) estimates of 6.1, 3.7, and 1.2 years, respectively. The 10-year adjusted cumulative incidences of all-cause mortality were 66.8% (95% CI 63.4–70.1), 75.4% (95% CI 72.1–78.6), and 90.6% (95% CI 87.4–93.3) for low, intermediate, and high-risk subgroups. The 10-year adjusted cumulative incidences of end-stage kidney disease (ESKD) were 20.4% (95% CI 6.1–24.5), 37.6% (95% CI 31.8–43.8), and 6.7% (95% CI 2.8–11.3) for low-risk, intermediate-risk, and high-risk subgroups. Finally, we trained a classifier for external validation with high cross-validation accuracy (85% [95% CI 83–86]) using a subset of easily obtainable clinical parameters. This marks an initial stride toward integrating precision medicine into risk stratification of AL amyloidosis for both all-cause mortality and ESKD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的 AL 淀粉样变性亚组以及死亡率和终末期肾病的累积发病率
免疫球蛋白轻链(AL)淀粉样变性是一种多系统疾病,治疗方案和疾病相关结果各不相同。目前的分期系统依赖于数量有限的心脏、肾脏和浆细胞异常生物标志物。为了改善全因死亡率和终末期肾病(ESKD)的预后,我们利用一套全面的临床和实验室参数应用了无监督机器学习。我们的研究队列包括波士顿大学淀粉样变性中心的 2067 名新确诊、活检证实的 AL 淀粉样变性患者。变量包括 31 个临床症状和 28 个基线实验室值。我们的聚类算法确定了AL淀粉样变性的三个亚组(低危、中危和高危),它们具有不同的临床表型,中位总生存期(OS)分别为6.1年、3.7年和1.2年。低危、中危和高危亚组的 10 年调整后全因死亡率累积发生率分别为 66.8%(95% CI 63.4-70.1)、75.4%(95% CI 72.1-78.6)和 90.6%(95% CI 87.4-93.3)。低危、中危和高危亚组的终末期肾病(ESKD)10 年调整后累积发病率分别为 20.4% (95% CI 6.1-24.5)、37.6% (95% CI 31.8-43.8) 和 6.7% (95% CI 2.8-11.3)。最后,我们使用易于获得的临床参数子集训练了一个用于外部验证的分类器,其交叉验证准确率很高(85% [95% CI 83-86])。这标志着我们在将精准医疗融入 AL 淀粉样变性的全因死亡率和 ESKD 风险分层方面迈出了第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.70
自引率
3.90%
发文量
363
审稿时长
3-6 weeks
期刊介绍: The American Journal of Hematology offers extensive coverage of experimental and clinical aspects of blood diseases in humans and animal models. The journal publishes original contributions in both non-malignant and malignant hematological diseases, encompassing clinical and basic studies in areas such as hemostasis, thrombosis, immunology, blood banking, and stem cell biology. Clinical translational reports highlighting innovative therapeutic approaches for the diagnosis and treatment of hematological diseases are actively encouraged.The American Journal of Hematology features regular original laboratory and clinical research articles, brief research reports, critical reviews, images in hematology, as well as letters and correspondence.
期刊最新文献
Oh node: Extranodal nodular involvement of chronic lymphocytic leukemia in the colon. The spectrum of sickle cell disease. Prognostic significance of mutation type and chromosome fragility in Fanconi anemia. Blood Plasma Methylated DNA Markers in the Detection of Lymphoma: Discovery, Validation, and Clinical Pilot. CM313 Monotherapy in Patients With Relapsed/Refractory Multiple Myeloma or Marginal Zone Lymphoma: A Multicenter, Phase 1 Dose-Escalation and Dose-Expansion Trial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1