Weizi Chen, Zipeng Xing, Na Zhang, Tao Cheng, Bo Ren, Xinyue Liu, Zibin Wang, Zhenzi Li, Wei Zhou
{"title":"Hierarchical Bi2Fe4O9/BiOI S-scheme heterojunctions with exceptional hydraulic shear induced photo-piezoelectric catalytic activity","authors":"Weizi Chen, Zipeng Xing, Na Zhang, Tao Cheng, Bo Ren, Xinyue Liu, Zibin Wang, Zhenzi Li, Wei Zhou","doi":"10.1038/s41545-024-00382-x","DOIUrl":null,"url":null,"abstract":"Hierarchical Bi2Fe4O9/BiOI S-scheme nanoflower heterostructures are prepared by hydrothermal method, which exhibit exceptional photo-piezoelectric catalytic performance. The tight binding between the sheets ensures the efficient electron transport, and provides a large interface area and adequate reaction sites for photo-piezoelectric catalytic reactions. At the same time, because the water flow in the water body produces hydraulic shear force on the material, the material produces piezoelectric effect. Bi2Fe4O9/BiOI exhibit a remarkable degradation efficiency of 99.4% for tetracycline and a hydrogen production rate of 4089.36 µmol h−1 g−1. The observed behavior can be explained by the combined influence of the formation of S-scheme structure and the process of photo-piezoelectric catalysis, confirmed by in-situ XPS, transient/steady-state fluorescence and piezoelectric response force test. The excellent stability of the material suggests its possible use in the sectors of energy and environment. This work introduces novel concepts for the future advancement of photo-piezoelectric synergistic catalysis.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":10.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00382-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00382-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hierarchical Bi2Fe4O9/BiOI S-scheme nanoflower heterostructures are prepared by hydrothermal method, which exhibit exceptional photo-piezoelectric catalytic performance. The tight binding between the sheets ensures the efficient electron transport, and provides a large interface area and adequate reaction sites for photo-piezoelectric catalytic reactions. At the same time, because the water flow in the water body produces hydraulic shear force on the material, the material produces piezoelectric effect. Bi2Fe4O9/BiOI exhibit a remarkable degradation efficiency of 99.4% for tetracycline and a hydrogen production rate of 4089.36 µmol h−1 g−1. The observed behavior can be explained by the combined influence of the formation of S-scheme structure and the process of photo-piezoelectric catalysis, confirmed by in-situ XPS, transient/steady-state fluorescence and piezoelectric response force test. The excellent stability of the material suggests its possible use in the sectors of energy and environment. This work introduces novel concepts for the future advancement of photo-piezoelectric synergistic catalysis.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.