Honggang Zhang , Yu Dong , Xiangyang Xu , Zhiyuan Liu , Pan Liu
{"title":"A novel framework of the alternating direction method of multipliers with application to traffic assignment problem","authors":"Honggang Zhang , Yu Dong , Xiangyang Xu , Zhiyuan Liu , Pan Liu","doi":"10.1016/j.trc.2024.104843","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a novel algorithmic framework to enhance the convergence efficiency of the alternating direction method of multipliers (ADMM) by incorporating the successive over relaxation (SOR) splitting method. The proposed framework holds applicability across various research fields for improving convergence efficiency. Currently, there exist two main methods for decomposing the separate optimization problems: Gauss-Seidel (GS) and Jacobi methods. The SOR method introduced in this paper offers a more efficient alternative. Following the original ADMM algorithm’s framework, we provide a detailed procedure for incorporating the SOR method into the ADMM framework in place of the GS splitting method. This development gives rise to a new method called ADMM-SOR, and then we apply this newly proposed algorithm to solve the deterministic user equilibrium (DUE) problem. Subsequently, to ensure the reliability of the proposed algorithm, we rigorously prove its convergence by leveraging some properties of variational inequalities. Additionally, the impact of the relaxation factor on the efficiency of the ADMM-SOR method is conducted, and we also explore a novel method to self-adjust the relaxation factor during each iteration. The new algorithm is verified based on numerical experiments, revealing that the novel ADMM-SOR framework achieves faster convergence in comparison to the original one, all the while maintaining exceptional parallel performance.</p></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"169 ","pages":"Article 104843"},"PeriodicalIF":7.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X24003644","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a novel algorithmic framework to enhance the convergence efficiency of the alternating direction method of multipliers (ADMM) by incorporating the successive over relaxation (SOR) splitting method. The proposed framework holds applicability across various research fields for improving convergence efficiency. Currently, there exist two main methods for decomposing the separate optimization problems: Gauss-Seidel (GS) and Jacobi methods. The SOR method introduced in this paper offers a more efficient alternative. Following the original ADMM algorithm’s framework, we provide a detailed procedure for incorporating the SOR method into the ADMM framework in place of the GS splitting method. This development gives rise to a new method called ADMM-SOR, and then we apply this newly proposed algorithm to solve the deterministic user equilibrium (DUE) problem. Subsequently, to ensure the reliability of the proposed algorithm, we rigorously prove its convergence by leveraging some properties of variational inequalities. Additionally, the impact of the relaxation factor on the efficiency of the ADMM-SOR method is conducted, and we also explore a novel method to self-adjust the relaxation factor during each iteration. The new algorithm is verified based on numerical experiments, revealing that the novel ADMM-SOR framework achieves faster convergence in comparison to the original one, all the while maintaining exceptional parallel performance.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.