Additive manufacturing of alumina refractories by binder jetting

IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS Open Ceramics Pub Date : 2024-09-07 DOI:10.1016/j.oceram.2024.100668
Enrico Storti , Patricia Kaiser , Marc Neumann , Alban Metallari , Filippo Gobbin , Hamada Elsayed , Jana Hubálková , Paolo Colombo , Christos G. Aneziris
{"title":"Additive manufacturing of alumina refractories by binder jetting","authors":"Enrico Storti ,&nbsp;Patricia Kaiser ,&nbsp;Marc Neumann ,&nbsp;Alban Metallari ,&nbsp;Filippo Gobbin ,&nbsp;Hamada Elsayed ,&nbsp;Jana Hubálková ,&nbsp;Paolo Colombo ,&nbsp;Christos G. Aneziris","doi":"10.1016/j.oceram.2024.100668","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, refractory components based on alumina were produced by binder jetting using a large-scale 3D printer. The formulation contained several particle fractions up to a grain size of 3 mm, equal to the printer resolution. The binder system contained fine dead burnt magnesia, milled citric acid and reactive alumina, which were added to the aggregate mixture to create the powder bed. Deionized water was deposited from the printer's nozzles and triggered the binding reaction between the magnesia and citric acid. After 24 h, the printed samples were removed from the powder bed, dried and sintered at 1600 °C for 5 h. Reactive alumina contributed to the <em>in situ</em> creation of magnesium aluminate spinel at high temperature. The samples were characterized in terms of Young's modulus of elasticity, bending and compressive strength in 2 directions (parallel and perpendicular to the printing direction). The broken parts were used to investigate physical properties such as the open porosity and bulk density. The microstructure was studied by means of computed tomography. Finally, powder samples were used to determine the phase composition at different stages of production by means of XRD.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001329/pdfft?md5=f30e964e06ad885bb3f625983535e7aa&pid=1-s2.0-S2666539524001329-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539524001329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, refractory components based on alumina were produced by binder jetting using a large-scale 3D printer. The formulation contained several particle fractions up to a grain size of 3 mm, equal to the printer resolution. The binder system contained fine dead burnt magnesia, milled citric acid and reactive alumina, which were added to the aggregate mixture to create the powder bed. Deionized water was deposited from the printer's nozzles and triggered the binding reaction between the magnesia and citric acid. After 24 h, the printed samples were removed from the powder bed, dried and sintered at 1600 °C for 5 h. Reactive alumina contributed to the in situ creation of magnesium aluminate spinel at high temperature. The samples were characterized in terms of Young's modulus of elasticity, bending and compressive strength in 2 directions (parallel and perpendicular to the printing direction). The broken parts were used to investigate physical properties such as the open porosity and bulk density. The microstructure was studied by means of computed tomography. Finally, powder samples were used to determine the phase composition at different stages of production by means of XRD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用粘结剂喷射技术快速制造氧化铝耐火材料
在这项工作中,使用大型 3D 打印机通过粘合剂喷射生产出了基于氧化铝的耐火材料。配方中包含几种颗粒,最大粒度为 3 毫米,相当于打印机的分辨率。粘合剂系统包含细碎的烧镁砂、研磨的柠檬酸和活性氧化铝,将其添加到骨料混合物中以形成粉末床。去离子水从打印机喷嘴喷出,引发氧化镁和柠檬酸之间的粘合反应。24 小时后,从粉末床中取出打印样品,干燥并在 1600 °C 下烧结 5 小时。样品在两个方向(平行于印刷方向和垂直于印刷方向)的杨氏弹性模量、弯曲强度和抗压强度方面进行了表征。破碎部分用于研究物理性质,如开放孔隙率和体积密度。通过计算机断层扫描对微观结构进行了研究。最后,利用 XRD 对粉末样品进行分析,以确定不同生产阶段的相组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Ceramics
Open Ceramics Materials Science-Materials Chemistry
CiteScore
4.20
自引率
0.00%
发文量
102
审稿时长
67 days
期刊最新文献
Microstructures, phase and mechanical characterisation of Al2O3-ZrO2-TiO2 coating produced by atmospheric plasma spraying Tri-axial magnetic alignment and magnetic anisotropies in misfit-layered calcium-based cobaltites doped with rare-earth ions Specifics of Al substitution into boron carbide: A DFT study Thermal properties of MB2-WC (M = Ti, Zr, Hf) and tungsten and their stability after deuterium plasma exposure Yttria-stabilised zirconia and lanthanum cerate granules with YSZ whiskers prepared by spray drying for thermal barrier coatings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1