Binomial Poisson Ailamujia model with statistical properties and application

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Journal of Radiation Research and Applied Sciences Pub Date : 2024-09-12 DOI:10.1016/j.jrras.2024.101096
Safar M. Alghamdi , Muhammad Ahsan-ul-Haq , Olayan Albalawi , Majdah Mohammed Badr , Eslam Hussam , H.E. Semary , M.A. Abdelkawy
{"title":"Binomial Poisson Ailamujia model with statistical properties and application","authors":"Safar M. Alghamdi ,&nbsp;Muhammad Ahsan-ul-Haq ,&nbsp;Olayan Albalawi ,&nbsp;Majdah Mohammed Badr ,&nbsp;Eslam Hussam ,&nbsp;H.E. Semary ,&nbsp;M.A. Abdelkawy","doi":"10.1016/j.jrras.2024.101096","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, an improved extension of the Poisson-Ailamujia distribution is introduced. The new distribution was derived using a binomial mixing approach, and the new model is named the “Binomial Poisson-Ailamujia (Bin-PA)” distribution. Some important statistical properties are derived, including mode, quantile function, moments and their associated measures, actuarial (risk) measures, and reliability features such as survival, hazard (failure) rate, and mean residual life function. The parameters of the proposed distribution are estimated using the maximum likelihood estimation method. A comprehensive simulation study is also carried out to access the behavior-derived maximum likelihood estimators. Furthermore, a new count-regression model was also introduced. Two datasets are utilized to demonstrate the applicability and usefulness of the new model. It is concluded that the Binomial Poisson-Ailamujia distribution is more flexible and efficiently analyzed both datasets as compared to competitive discrete distributions.</p></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"17 4","pages":"Article 101096"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1687850724002802/pdfft?md5=e8e9969c960020913ccce425850320d2&pid=1-s2.0-S1687850724002802-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850724002802","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, an improved extension of the Poisson-Ailamujia distribution is introduced. The new distribution was derived using a binomial mixing approach, and the new model is named the “Binomial Poisson-Ailamujia (Bin-PA)” distribution. Some important statistical properties are derived, including mode, quantile function, moments and their associated measures, actuarial (risk) measures, and reliability features such as survival, hazard (failure) rate, and mean residual life function. The parameters of the proposed distribution are estimated using the maximum likelihood estimation method. A comprehensive simulation study is also carried out to access the behavior-derived maximum likelihood estimators. Furthermore, a new count-regression model was also introduced. Two datasets are utilized to demonstrate the applicability and usefulness of the new model. It is concluded that the Binomial Poisson-Ailamujia distribution is more flexible and efficiently analyzed both datasets as compared to competitive discrete distributions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有统计特性的二项式泊松艾拉穆贾模型及其应用
本研究介绍了泊松-艾拉穆贾分布的改进扩展。新分布是用二项混合方法推导出来的,新模型被命名为 "二项泊松-Ailamujia(Bin-PA)"分布。推导出了一些重要的统计特性,包括模式、量子函数、矩及其相关度量、精算(风险)度量,以及存活率、危险(故障)率和平均残余寿命函数等可靠性特征。采用最大似然估计法对拟议分布的参数进行了估计。还进行了全面的模拟研究,以获取行为衍生最大似然估计值。此外,还引入了一个新的计数回归模型。利用两个数据集证明了新模型的适用性和实用性。结论是,与竞争性离散分布相比,二项泊松-Ailamujia 分布更灵活、更有效地分析了这两个数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
期刊最新文献
The impact of radiologists’ characteristics on the detection of COVID-19 in chest CT scans Effects of thermal radiation on TiO2-Cu/water hybrid nanofluid: A finite difference discretization Coronary computed tomographic angiography predicts crossing through chronic total occlusion within three guidewires Detection of clavicle fracture after martial arts training based on 3D segmentation and multi-perspective fusion Application of ultrasonic imaging technology in beef cattle breeding management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1