Genome-wide characterization of the Late Embryogenesis Abundant (LEA) gene family in Ammopiptanthus nanus and overexpression of AnLEA30 enhanced abiotic stress tolerance in tobacco
Yanjing Liu, Wanli Shi, Kuo Dong, Xueqi Zhao, Yuzhen Chen, Cunfu Lu
{"title":"Genome-wide characterization of the Late Embryogenesis Abundant (LEA) gene family in Ammopiptanthus nanus and overexpression of AnLEA30 enhanced abiotic stress tolerance in tobacco","authors":"Yanjing Liu, Wanli Shi, Kuo Dong, Xueqi Zhao, Yuzhen Chen, Cunfu Lu","doi":"10.1016/j.envexpbot.2024.105969","DOIUrl":null,"url":null,"abstract":"<div><p>Late embryogenesis abundant (LEA) proteins play a crucial role in determining how plants respond to abiotic stress. Nonetheless, the comprehensive characterization and function of the LEA gene family in <em>Ammopiptanthus nanus,</em> an endangered evergreen shrub plant that survived in harsh desert environments, are largely unknown. Through a comprehensive genome-wide investigation, we successfully identified 45 <em>AnLEA</em> genes in <em>A. nanus</em> and divided them into eight groups. AnLEAs have typical LEA domains, and the promoter analysis shows that they contain various <em>cis</em>-regulatory elements related to stress resistance. The diverse expression patterns of <em>AnLEAs</em> under different abiotic stress treatments suggest that they play an important role in responding to stress. Overexpression of <em>AnLEA30</em> in tobacco significantly enhanced abiotic stress tolerance by effectively stabilizing and protecting membranes, scavenging reactive oxide species (ROS), and improving photosynthesis, demonstrating the potential for application of <em>AnLEA30</em> in plant improvement.</p></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":"228 ","pages":"Article 105969"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847224003277","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Late embryogenesis abundant (LEA) proteins play a crucial role in determining how plants respond to abiotic stress. Nonetheless, the comprehensive characterization and function of the LEA gene family in Ammopiptanthus nanus, an endangered evergreen shrub plant that survived in harsh desert environments, are largely unknown. Through a comprehensive genome-wide investigation, we successfully identified 45 AnLEA genes in A. nanus and divided them into eight groups. AnLEAs have typical LEA domains, and the promoter analysis shows that they contain various cis-regulatory elements related to stress resistance. The diverse expression patterns of AnLEAs under different abiotic stress treatments suggest that they play an important role in responding to stress. Overexpression of AnLEA30 in tobacco significantly enhanced abiotic stress tolerance by effectively stabilizing and protecting membranes, scavenging reactive oxide species (ROS), and improving photosynthesis, demonstrating the potential for application of AnLEA30 in plant improvement.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.