Supan Wang , Kaifeng Wang , Chunyin Zhang , Xinyan Huang
{"title":"Spotting ignition of plastic foam by a fast-moving hot metal particle","authors":"Supan Wang , Kaifeng Wang , Chunyin Zhang , Xinyan Huang","doi":"10.1016/j.firesaf.2024.104253","DOIUrl":null,"url":null,"abstract":"<div><p>Spotting ignition involves dynamic interaction between fuel bed and hot particles, but the scientific understanding of the ignition by a fast-moving hot particle is still limited. Herein, a hot steel particle with various horizontal velocities, temperatures, and sizes is shot to ignite vertically oriented low-density expandable polystyrene foam. A high-speed particle can directly get embedded into the foam to achieve flash-point, fire-point, or no ignition, while a low-speed particle bounces away from the foam without ignition. Results show that for a particle of 1150 °C, its minimum velocity for embedding is 12.00 m/s. Such a critical velocity for hot-particle embedded or ignition slightly decreases as particle temperature increases. Minimum ignition temperature of these high-speed particles is 200 °C higher than that of near-static or with a low free-fall velocity, due to the shorter residence time and insufficient to produce a flammable mixture. Moreover, when the particle is neither too slow to bounce away nor too fast to get embedded, it will be partially embedded on the sample surface to burnout the fuel, posing the biggest fire hazard. It deepens our knowledge of the complex interaction between hot moving particles and insulation foam to reduce spotting fire risk for building façade.</p></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711224001668","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Spotting ignition involves dynamic interaction between fuel bed and hot particles, but the scientific understanding of the ignition by a fast-moving hot particle is still limited. Herein, a hot steel particle with various horizontal velocities, temperatures, and sizes is shot to ignite vertically oriented low-density expandable polystyrene foam. A high-speed particle can directly get embedded into the foam to achieve flash-point, fire-point, or no ignition, while a low-speed particle bounces away from the foam without ignition. Results show that for a particle of 1150 °C, its minimum velocity for embedding is 12.00 m/s. Such a critical velocity for hot-particle embedded or ignition slightly decreases as particle temperature increases. Minimum ignition temperature of these high-speed particles is 200 °C higher than that of near-static or with a low free-fall velocity, due to the shorter residence time and insufficient to produce a flammable mixture. Moreover, when the particle is neither too slow to bounce away nor too fast to get embedded, it will be partially embedded on the sample surface to burnout the fuel, posing the biggest fire hazard. It deepens our knowledge of the complex interaction between hot moving particles and insulation foam to reduce spotting fire risk for building façade.
期刊介绍:
Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.