Spotting ignition of plastic foam by a fast-moving hot metal particle

IF 3.4 3区 工程技术 Q2 ENGINEERING, CIVIL Fire Safety Journal Pub Date : 2024-09-05 DOI:10.1016/j.firesaf.2024.104253
Supan Wang , Kaifeng Wang , Chunyin Zhang , Xinyan Huang
{"title":"Spotting ignition of plastic foam by a fast-moving hot metal particle","authors":"Supan Wang ,&nbsp;Kaifeng Wang ,&nbsp;Chunyin Zhang ,&nbsp;Xinyan Huang","doi":"10.1016/j.firesaf.2024.104253","DOIUrl":null,"url":null,"abstract":"<div><p>Spotting ignition involves dynamic interaction between fuel bed and hot particles, but the scientific understanding of the ignition by a fast-moving hot particle is still limited. Herein, a hot steel particle with various horizontal velocities, temperatures, and sizes is shot to ignite vertically oriented low-density expandable polystyrene foam. A high-speed particle can directly get embedded into the foam to achieve flash-point, fire-point, or no ignition, while a low-speed particle bounces away from the foam without ignition. Results show that for a particle of 1150 °C, its minimum velocity for embedding is 12.00 m/s. Such a critical velocity for hot-particle embedded or ignition slightly decreases as particle temperature increases. Minimum ignition temperature of these high-speed particles is 200 °C higher than that of near-static or with a low free-fall velocity, due to the shorter residence time and insufficient to produce a flammable mixture. Moreover, when the particle is neither too slow to bounce away nor too fast to get embedded, it will be partially embedded on the sample surface to burnout the fuel, posing the biggest fire hazard. It deepens our knowledge of the complex interaction between hot moving particles and insulation foam to reduce spotting fire risk for building façade.</p></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711224001668","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Spotting ignition involves dynamic interaction between fuel bed and hot particles, but the scientific understanding of the ignition by a fast-moving hot particle is still limited. Herein, a hot steel particle with various horizontal velocities, temperatures, and sizes is shot to ignite vertically oriented low-density expandable polystyrene foam. A high-speed particle can directly get embedded into the foam to achieve flash-point, fire-point, or no ignition, while a low-speed particle bounces away from the foam without ignition. Results show that for a particle of 1150 °C, its minimum velocity for embedding is 12.00 m/s. Such a critical velocity for hot-particle embedded or ignition slightly decreases as particle temperature increases. Minimum ignition temperature of these high-speed particles is 200 °C higher than that of near-static or with a low free-fall velocity, due to the shorter residence time and insufficient to produce a flammable mixture. Moreover, when the particle is neither too slow to bounce away nor too fast to get embedded, it will be partially embedded on the sample surface to burnout the fuel, posing the biggest fire hazard. It deepens our knowledge of the complex interaction between hot moving particles and insulation foam to reduce spotting fire risk for building façade.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速移动的热金属颗粒点燃塑料泡沫
点火涉及燃料层和热颗粒之间的动态相互作用,但对快速移动的热颗粒点火的科学理解仍然有限。在这里,我们用不同水平速度、温度和尺寸的热钢粒子来点燃垂直取向的低密度可发性聚苯乙烯泡沫。高速粒子可直接嵌入泡沫中,达到闪点、着火点或不着火的效果,而低速粒子则会从泡沫中弹出,不会着火。结果表明,对于温度为 1150 °C 的粒子,其嵌入的最小速度为 12.00 m/s。随着粒子温度的升高,热粒子嵌入或点燃的临界速度略有降低。这些高速粒子的最低点火温度比接近静态或低自由落体速度的粒子高 200 °C,这是因为粒子的停留时间较短,不足以产生可燃混合物。此外,当颗粒速度太慢无法弹开也太快无法嵌入时,它将部分嵌入样品表面烧毁燃料,构成最大的火灾隐患。这加深了我们对热运动粒子与保温泡沫之间复杂相互作用的认识,从而降低了建筑外墙的点火风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fire Safety Journal
Fire Safety Journal 工程技术-材料科学:综合
CiteScore
5.70
自引率
9.70%
发文量
153
审稿时长
60 days
期刊介绍: Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.
期刊最新文献
Bench-scale thermomechanical assessment of carbon fibre reinforced polymer C-channels Post-fire residual mechanical properties of Q460GJ steel under different pre-tensile stresses Statistical variation of the burning rate and extinction characteristics of engineered timber products Performance fire tests on building external walls made of sandwich panels On gravity-driven liquid nitrogen jets reach and horizontal spread for extinction of ground fires by aerial means
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1