Noureddine El Messaoudi , Youssef Miyah , Mohammed Benjelloun , Jordana Georgin , Dison S.P. Franco , Zeynep Mine Şenol , Zeynep Ciğeroğlu , Maryam El Hajam , Salah Knani , Phuong Nguyen-Tri
{"title":"A comprehensive review on designing nanocomposite adsorbents for efficient removal of 4-nitrophenol from water","authors":"Noureddine El Messaoudi , Youssef Miyah , Mohammed Benjelloun , Jordana Georgin , Dison S.P. Franco , Zeynep Mine Şenol , Zeynep Ciğeroğlu , Maryam El Hajam , Salah Knani , Phuong Nguyen-Tri","doi":"10.1016/j.nanoso.2024.101326","DOIUrl":null,"url":null,"abstract":"<div><p>Water is the basic entity required for the survival of any life form on earth. However, in the present scenario, due to its contamination with various types of contaminants, there is a global crisis of water. One of the major organic pollutants described to be present in most industrial-modeled water is 4-nitrophenol. Due to its persistence and high potential for bioaccumulation, it is considered a high-priority environmental and health concern. Numerous nanomaterials are considered to have huge potential in the treatment of contaminated water due to their unique high surface area as well as some beneficial properties that support work even in low concentrations. In the last few years, much attention has been paid by scientists to different applications of nanocomposites for water purification. This review represents a comprehensive approach to how to enhance nanocomposite-mediated adsorption for effective 4-NP removal from modeled water. It involves high adsorption capacity, with adsorbents calcium and aluminum layered double hydroxide-loaded magnetic nanocomposite and magnetite nanoparticles, with capacities as high as 598 mg g-1 and 636 mg g-1, respectively. Such advanced materials may improve the hydrophilicity and mechanical properties of the material. The processes could be endothermic and exothermic in nature. pH also plays a role in performance, where, in most studies, conditions above 6 corroborate the removal of 4-NP. Textural properties and functional groups present on the surface of the adsorbent also determine whether the process is physical or chemical. Further studies should be focused on large-scale decontamination of the contaminant, entrenching the use of low-cost and environmentally friendly adsorbents that are more environmentally acceptable in real applications. This would not enable researchers to follow up with new strategies for the remediation of water that is contaminated with 4-NP on the basis of making a model for engineering nanocomposites for the remediation of contaminants.</p></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101326"},"PeriodicalIF":5.4500,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24002373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Water is the basic entity required for the survival of any life form on earth. However, in the present scenario, due to its contamination with various types of contaminants, there is a global crisis of water. One of the major organic pollutants described to be present in most industrial-modeled water is 4-nitrophenol. Due to its persistence and high potential for bioaccumulation, it is considered a high-priority environmental and health concern. Numerous nanomaterials are considered to have huge potential in the treatment of contaminated water due to their unique high surface area as well as some beneficial properties that support work even in low concentrations. In the last few years, much attention has been paid by scientists to different applications of nanocomposites for water purification. This review represents a comprehensive approach to how to enhance nanocomposite-mediated adsorption for effective 4-NP removal from modeled water. It involves high adsorption capacity, with adsorbents calcium and aluminum layered double hydroxide-loaded magnetic nanocomposite and magnetite nanoparticles, with capacities as high as 598 mg g-1 and 636 mg g-1, respectively. Such advanced materials may improve the hydrophilicity and mechanical properties of the material. The processes could be endothermic and exothermic in nature. pH also plays a role in performance, where, in most studies, conditions above 6 corroborate the removal of 4-NP. Textural properties and functional groups present on the surface of the adsorbent also determine whether the process is physical or chemical. Further studies should be focused on large-scale decontamination of the contaminant, entrenching the use of low-cost and environmentally friendly adsorbents that are more environmentally acceptable in real applications. This would not enable researchers to follow up with new strategies for the remediation of water that is contaminated with 4-NP on the basis of making a model for engineering nanocomposites for the remediation of contaminants.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .