Elizabeth M. Mamros , Fabian Maaß , A. Erman Tekkaya , Brad L. Kinsey , Jinjin Ha
{"title":"Martensitic transformation of SS304 truncated square pyramid manufactured by single point incremental forming","authors":"Elizabeth M. Mamros , Fabian Maaß , A. Erman Tekkaya , Brad L. Kinsey , Jinjin Ha","doi":"10.1016/j.cirpj.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>To investigate the microstructural changes that occur in stainless steel (SS) 304 during single point incremental forming (SPIF), experiments and finite element (FE) simulations were conducted for a truncated square pyramid geometry. Results from material characterization experiments for four stress states, i.e., uniaxial tension, equibiaxial tension, shear, and uniaxial compression, were combined to construct a material model based on the constituent phases and transformation kinetics. The material model was implemented into numerical analyses, where a two-step FE approach was utilized to predict martensite transformation in SPIF with increased computational efficiency. Validation experiments showed good agreement with the martensite transformation predictions from the FE simulations. The four locations along the pyramid wall revealed varying martensite volume fractions because of the differing stress states of bending, stretching, and shear that the blank is subjected to during SPIF, which can affect the microstructure. The stress state can be defined in terms of the stress triaxiality and Lode angle parameter. The FE results indicate that stress triaxiality impacted the martensitic transformation kinetics in SS304 more than the Lode angle parameter for SPIF for this particular material and geometry. Thus, distinct stress states in incremental forming can affect the martensitic transformation locally and, when used strategically, achieve functionally graded materials. This is pertinent to industrial applications requiring custom components, e.g., trauma fixation hardware for medical applications.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"55 ","pages":"Pages 28-41"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581724001299","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the microstructural changes that occur in stainless steel (SS) 304 during single point incremental forming (SPIF), experiments and finite element (FE) simulations were conducted for a truncated square pyramid geometry. Results from material characterization experiments for four stress states, i.e., uniaxial tension, equibiaxial tension, shear, and uniaxial compression, were combined to construct a material model based on the constituent phases and transformation kinetics. The material model was implemented into numerical analyses, where a two-step FE approach was utilized to predict martensite transformation in SPIF with increased computational efficiency. Validation experiments showed good agreement with the martensite transformation predictions from the FE simulations. The four locations along the pyramid wall revealed varying martensite volume fractions because of the differing stress states of bending, stretching, and shear that the blank is subjected to during SPIF, which can affect the microstructure. The stress state can be defined in terms of the stress triaxiality and Lode angle parameter. The FE results indicate that stress triaxiality impacted the martensitic transformation kinetics in SS304 more than the Lode angle parameter for SPIF for this particular material and geometry. Thus, distinct stress states in incremental forming can affect the martensitic transformation locally and, when used strategically, achieve functionally graded materials. This is pertinent to industrial applications requiring custom components, e.g., trauma fixation hardware for medical applications.
期刊介绍:
The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.