Prediction of dynamic response of high-Strength concrete − based on the modified constitutive model

IF 4.4 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Structures Pub Date : 2024-09-11 DOI:10.1016/j.compstruc.2024.107515
{"title":"Prediction of dynamic response of high-Strength concrete − based on the modified constitutive model","authors":"","doi":"10.1016/j.compstruc.2024.107515","DOIUrl":null,"url":null,"abstract":"<div><p>Concrete with new features such as high strength and a high tension–compression ratio has been developed to enhance building safety and the defense structure capability, which also poses a challenge to classical constitutive models such as the Holmquist-Johnson-Cook (HJC) model.</p><p>This study proposes a flexible constitutive model that is suitable for concrete-like materials with varying strength and tension–compression ratios. Known as the three-invariant model, it features the explicit introduction of two mechanical characteristic parameters: the tension–compression ratio and the Lode angle. By strictly passing through (or closely approximating) six benchmark stress state points, the model effectively captures tension–compression anisotropy and yield behaviors across the entire range of hydrostatic pressure. To further extend the static model to dynamic conditions, a unified S-type strain rate equation is developed. This equation accounts for dynamic tension–compression anisotropy arising from the material’s intrinsic properties by considering the influence of hydrostatic pressure on strain rate effects. Experimental data from various rock and concrete specimens subjected to true triaxial stress states are compared with calculated data. The results confirm that the proposed model accurately reflects the yield strength and improves the predicted accuracy of structural responses under complex stress states.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004579492400244X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Concrete with new features such as high strength and a high tension–compression ratio has been developed to enhance building safety and the defense structure capability, which also poses a challenge to classical constitutive models such as the Holmquist-Johnson-Cook (HJC) model.

This study proposes a flexible constitutive model that is suitable for concrete-like materials with varying strength and tension–compression ratios. Known as the three-invariant model, it features the explicit introduction of two mechanical characteristic parameters: the tension–compression ratio and the Lode angle. By strictly passing through (or closely approximating) six benchmark stress state points, the model effectively captures tension–compression anisotropy and yield behaviors across the entire range of hydrostatic pressure. To further extend the static model to dynamic conditions, a unified S-type strain rate equation is developed. This equation accounts for dynamic tension–compression anisotropy arising from the material’s intrinsic properties by considering the influence of hydrostatic pressure on strain rate effects. Experimental data from various rock and concrete specimens subjected to true triaxial stress states are compared with calculated data. The results confirm that the proposed model accurately reflects the yield strength and improves the predicted accuracy of structural responses under complex stress states.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高强度混凝土动态响应预测--基于修改后的结构模型
具有高强度和高拉伸压缩比等新特性的混凝土已被开发出来,以提高建筑安全性和防御结构能力,这也对 Holmquist-Johnson-Cook 模型(HJC)等经典构成模型提出了挑战。该模型被称为三变量模型,其特点是明确引入了两个力学特征参数:拉压比和洛德角。通过严格通过(或近似)六个基准应力状态点,该模型可有效捕捉整个静水压力范围内的拉伸压缩各向异性和屈服行为。为了进一步将静态模型扩展到动态条件,我们开发了一个统一的 S 型应变率方程。该方程通过考虑静水压力对应变率效应的影响,解释了由材料固有特性引起的动态拉压各向异性。将各种岩石和混凝土试样在真实三轴应力状态下的实验数据与计算数据进行了比较。结果证实,所提出的模型准确地反映了屈服强度,并提高了复杂应力状态下结构响应的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
期刊最新文献
Digital twins-boosted identification of bridge vehicle loads integrating video and physics Offline iteration-based real-time hybrid simulation for high-fidelity fluid-structure dynamic interaction in structures subjected to seismic excitation Complete dispersion characteristics of elastic waves in periodically multilayered arbitrarily-anisotropic media A novel modular origami strategy: Achieving adjustable Poisson’s ratio and tunable distinctive mechanical properties for versatile applications Stress-constrained topology optimization using the velocity field level set method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1