{"title":"Electric current-induced phenomena in metallic materials","authors":"","doi":"10.1016/j.cossms.2024.101190","DOIUrl":null,"url":null,"abstract":"<div><p>The application of electric current on metallic materials alters the microstructures and mechanical properties of materials. The improved formability and accelerated microstructural evolution in material via the application of electric current is referred to as electric current-induced phenomena. This review includes extensive experimental and computational studies on the deformation behavior and microstructural evolutions of metallic materials, underlying mechanisms, and practical applications in industry. We precisely introduce various electric current-induced effects by considering different materials and electric conditions. The discussion covers the mechanisms underlying these effects, emphasizing both thermal and athermal effects of electric current, supported by experimental evidence, physical principles, atomic-scale simulations, and numerical methods. Furthermore, we explore the applications of electric current-induced phenomena in material processing techniques including electrically-assisted forming, treatment, joining, and machining. This review aims to deepen the understanding of how electric currents affect metallic materials and inspire further development of advanced fabrication and processing technologies in time- and energy-efficient ways.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":null,"pages":null},"PeriodicalIF":12.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028624000561","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The application of electric current on metallic materials alters the microstructures and mechanical properties of materials. The improved formability and accelerated microstructural evolution in material via the application of electric current is referred to as electric current-induced phenomena. This review includes extensive experimental and computational studies on the deformation behavior and microstructural evolutions of metallic materials, underlying mechanisms, and practical applications in industry. We precisely introduce various electric current-induced effects by considering different materials and electric conditions. The discussion covers the mechanisms underlying these effects, emphasizing both thermal and athermal effects of electric current, supported by experimental evidence, physical principles, atomic-scale simulations, and numerical methods. Furthermore, we explore the applications of electric current-induced phenomena in material processing techniques including electrically-assisted forming, treatment, joining, and machining. This review aims to deepen the understanding of how electric currents affect metallic materials and inspire further development of advanced fabrication and processing technologies in time- and energy-efficient ways.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field