Bivalve shell growth from molecular to sclerochronological scale: Environment and intrinsic factors control increment deposition

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Marine environmental research Pub Date : 2024-09-04 DOI:10.1016/j.marenvres.2024.106730
{"title":"Bivalve shell growth from molecular to sclerochronological scale: Environment and intrinsic factors control increment deposition","authors":"","doi":"10.1016/j.marenvres.2024.106730","DOIUrl":null,"url":null,"abstract":"<div><p>Biomineralisation of bivalve shells raises questions at the level of genes to the final calcified product. For the first time, gene expression has been studied in association with growth increment deposition in the mussel <em>Mytilus galloprovincialis</em>. A short-term experiment highlighted that biomineralisation genes exhibit a rhythm of expression consistent with the observed tidal increment formation. Long-term mark-recapture experiments were conducted in three Mediterranean environments and revealed that the mussel shells harbour complex incrementation regimes, consisting of daily, tidal and a mixed periodicity of ∼1.7 growth increment.d<sup>−1</sup> formed. The latter is likely related to the local tidal regime, although the mussels were continuously submerged and exposed to a small tidal range. The pattern of growth increments shifted from mixed to daily in Mediterranean lagoon, and to tidal at sea, probably linked to biological clocks. Based on our results and the literature, a hypothetical model for mussel shell increment formation in various habitats is proposed.</p></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S014111362400391X/pdfft?md5=49913b26ac5c1f61d8dcec8d5e25d6ae&pid=1-s2.0-S014111362400391X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014111362400391X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Biomineralisation of bivalve shells raises questions at the level of genes to the final calcified product. For the first time, gene expression has been studied in association with growth increment deposition in the mussel Mytilus galloprovincialis. A short-term experiment highlighted that biomineralisation genes exhibit a rhythm of expression consistent with the observed tidal increment formation. Long-term mark-recapture experiments were conducted in three Mediterranean environments and revealed that the mussel shells harbour complex incrementation regimes, consisting of daily, tidal and a mixed periodicity of ∼1.7 growth increment.d−1 formed. The latter is likely related to the local tidal regime, although the mussels were continuously submerged and exposed to a small tidal range. The pattern of growth increments shifted from mixed to daily in Mediterranean lagoon, and to tidal at sea, probably linked to biological clocks. Based on our results and the literature, a hypothetical model for mussel shell increment formation in various habitats is proposed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从分子尺度到年代学尺度的双壳类贝壳生长:环境和内在因素控制增量沉积
双壳贝类外壳的生物矿化引发了最终钙化产物基因水平的问题。我们首次研究了与贻贝生长增量沉积相关的基因表达。短期实验表明,生物矿化基因的表达节奏与观察到的潮汐增量形成一致。在三个地中海环境中进行的长期标记-重捕实验显示,贻贝贝壳具有复杂的增量机制,包括每日、潮汐和 1.7 个生长增量.d-1 的混合周期。后者可能与当地的潮汐制度有关,尽管贻贝持续浸没并暴露在较小的潮汐范围内。在地中海泻湖,生长增量的模式从混合型转变为日生长增量,在海上则转变为潮汐型,这可能与生物钟有关。根据我们的研究结果和文献资料,提出了不同生境中贻贝贝壳增量形成的假设模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine environmental research
Marine environmental research 环境科学-毒理学
CiteScore
5.90
自引率
3.00%
发文量
217
审稿时长
46 days
期刊介绍: Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes. Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following: – The extent, persistence, and consequences of change and the recovery from such change in natural marine systems – The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems – The biogeochemistry of naturally occurring and anthropogenic substances – Models that describe and predict the above processes – Monitoring studies, to the extent that their results provide new information on functional processes – Methodological papers describing improved quantitative techniques for the marine sciences.
期刊最新文献
Microplastic biofilms promote the horizontal transfer of antibiotic resistance genes in estuarine environments. Mutligenerational chronic exposure to near future ocean acidification in European sea bass (Dicentrarchus labrax): Insights into the regulation of the transcriptome in a sensory organ involved in feed intake, the tongue. Quarry rock reef design features influence fish assemblage structure across a systematically heterogenous restoration reef. Microbial ocean-atmosphere transfer: The influence of sewage discharge into coastal waters on bioaerosols from an urban beach in the subtropical Atlantic. Skeletal magnesium content in Antarctic echinoderms along a latitudinal gradient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1