Convolutional autoencoders, clustering, and POD for low-dimensional parametrization of flow equations

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Computers & Mathematics with Applications Pub Date : 2024-09-11 DOI:10.1016/j.camwa.2024.08.032
Jan Heiland , Yongho Kim
{"title":"Convolutional autoencoders, clustering, and POD for low-dimensional parametrization of flow equations","authors":"Jan Heiland ,&nbsp;Yongho Kim","doi":"10.1016/j.camwa.2024.08.032","DOIUrl":null,"url":null,"abstract":"<div><p>Simulations of large-scale dynamical systems require expensive computations and large amounts of storage. Low-dimensional representations of high-dimensional states such as in reduced order models deriving from, say, Proper Orthogonal Decomposition (POD) trade in a reduced model complexity against accuracy and can be a solution to lessen the computational burdens. However, for really low-dimensional parametrizations of the states as they may be needed for example for controller design, linear methods like the POD come to their natural limits so that nonlinear approaches will be the methods of choice. In this work, we propose a convolutional autoencoder (CAE) consisting of a nonlinear encoder and an affine linear decoder and consider a deep clustering model where a CAE is integrated with k-means clustering for improved encoding performance. The proposed set of methods is compared to the standard POD approach in three scenarios: single- and double-cylinder wakes modeled by incompressible Navier-Stokes equations and flow setup described by viscous Burgers' equations.</p></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0898122124003997/pdfft?md5=0435f6e1701db585bc0ec9dc668ce568&pid=1-s2.0-S0898122124003997-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124003997","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Simulations of large-scale dynamical systems require expensive computations and large amounts of storage. Low-dimensional representations of high-dimensional states such as in reduced order models deriving from, say, Proper Orthogonal Decomposition (POD) trade in a reduced model complexity against accuracy and can be a solution to lessen the computational burdens. However, for really low-dimensional parametrizations of the states as they may be needed for example for controller design, linear methods like the POD come to their natural limits so that nonlinear approaches will be the methods of choice. In this work, we propose a convolutional autoencoder (CAE) consisting of a nonlinear encoder and an affine linear decoder and consider a deep clustering model where a CAE is integrated with k-means clustering for improved encoding performance. The proposed set of methods is compared to the standard POD approach in three scenarios: single- and double-cylinder wakes modeled by incompressible Navier-Stokes equations and flow setup described by viscous Burgers' equations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于流动方程低维参数化的卷积自编码器、聚类和 POD
大规模动态系统的模拟需要昂贵的计算和大量的存储。高维状态的低维表示法,例如由适当正交分解法(POD)衍生出的低阶模型,以降低模型复杂度来换取精度,是减轻计算负担的一种解决方案。然而,对于真正的低维状态参数化,例如控制器设计所需的低维状态参数化,POD 等线性方法已达到其自然极限,因此非线性方法将成为首选。在这项工作中,我们提出了一种由非线性编码器和仿射线性解码器组成的卷积自动编码器(CAE),并考虑了一种深度聚类模型,在该模型中,CAE 与 k-means 聚类相结合,以提高编码性能。所提出的方法集与标准 POD 方法在三种情况下进行了比较:用不可压缩纳维-斯托克斯方程建模的单缸和双缸涡流,以及用粘性布尔格斯方程描述的流动设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
期刊最新文献
Numerical study of magnesium dendrite microstructure under convection: Change of dendrite symmetry Topology optimization design of labyrinth seal-type devices considering subsonic compressible turbulent flow conditions An implementation of hp-FEM for the fractional Laplacian Modular parametric PGD enabling online solution of partial differential equations An implicit GNN solver for Poisson-like problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1