{"title":"Dynamic Event-Triggered Containment Control for T–S Fuzzy Multiagent Systems With Actuator Faults","authors":"Lihong Feng;Bonan Huang;Xiangpeng Xie","doi":"10.1109/JSYST.2024.3408607","DOIUrl":null,"url":null,"abstract":"This article investigates the output containment problem for nonlinear heterogeneous multiagent systems subjected to actuator faults. The dynamics of followers are modeled by Takagi–Sugeno (T–S) fuzzy systems, these models are effective in handling a wide range of nonlinearities. First, to address the challenge of limited information interaction between followers and leaders, a distributed compensator is developed to estimate the convex hull information derived from the leaders' states. Furthermore, a dynamic event-triggered mechanism combined with a sampler is employed to eliminate unnecessary continuous transmission, thereby reducing the communication burden and saving energy. Subsequently, fuzzy controllers are devised for the followers based on the output information and the states of compensators, ensuring the output containment of the T–S fuzzy system and preventing the propagation of actuator faults. The Lyapunov stability theory is utilized to derive rigorous convergence conditions for the system, and then, gain matrices are obtained in terms of linear matrix inequalities. A numerical simulation and a tunnel diode network circuit model simulation are provided to demonstrate the effectiveness and superiority of the proposed controller.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 3","pages":"1538-1548"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663209/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article investigates the output containment problem for nonlinear heterogeneous multiagent systems subjected to actuator faults. The dynamics of followers are modeled by Takagi–Sugeno (T–S) fuzzy systems, these models are effective in handling a wide range of nonlinearities. First, to address the challenge of limited information interaction between followers and leaders, a distributed compensator is developed to estimate the convex hull information derived from the leaders' states. Furthermore, a dynamic event-triggered mechanism combined with a sampler is employed to eliminate unnecessary continuous transmission, thereby reducing the communication burden and saving energy. Subsequently, fuzzy controllers are devised for the followers based on the output information and the states of compensators, ensuring the output containment of the T–S fuzzy system and preventing the propagation of actuator faults. The Lyapunov stability theory is utilized to derive rigorous convergence conditions for the system, and then, gain matrices are obtained in terms of linear matrix inequalities. A numerical simulation and a tunnel diode network circuit model simulation are provided to demonstrate the effectiveness and superiority of the proposed controller.
期刊介绍:
This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.